234 research outputs found

    γ-Hemolysin oligomeric structure and effect of its formation on supported lipid bilayers: An AFM Investigation.

    Get PDF
    γ-Hemolysins are bicomponent β-barrel pore forming toxins produced by Staphylococcus aureus as water-soluble monomers, which assemble into oligomeric pores on the surface of lipid bilayers. Here, after investigating the oligomeric structure of γ-hemolysins on supported lipid bilayers (SLBs) by atomic force microscopy (AFM), we studied the effect produced by this toxin on the structure of SLBs. We found that oligomeric structures with different number of monomers can assemble on the lipid bilayer being the octameric form the most stable one. Moreover, in this membrane model we found that γ-hemolysins can form clusters of oligomers inducing a curvature in the lipid bilayer, which could probably enhance the aggressiveness of these toxins at high concentrations

    Bartlett pear unsaturated ethyl deconoates and C9 compounds among components characterizing cv. Catalan roxo grape marc distillates

    Get PDF
    Catalan roxo marc distillates contain compounds at an unusual level in a grape derivate. The most peculiar are several unsaturated ethyl decanoates typical of Bartlett pear distillates and derived from ethyl esters found in the grape skins, some of which partially modified in the stereoisomery probably by the fermentation process. Remarkable compounds are unbranched aliphatic C-9 compounds at different oxidation state as well as ethyl nonanoate. At sensorially interesting levels methyl and ethyl salicylate and ethyl cinnamate, monoterpenols typical of floral-like varieties, vitispiranes and 4-ethylguaiacol are detected. Methyl salicylate is found in the berry as free and bound compound as several monoterpenols

    Methyl trans geranate and farnesoate as markers for Gewürztraminer grape skins and related distillates

    Get PDF
    Methyl ester of trans geranic and farnesoic acids, farnesol and two alpha-farnesene isomers are remarkable compounds in skins of mature grapes as well as in marc distillates of Traminer variety. Considerations about their level in both products of other floral varieties, like Yellow and Rose Muscats and Müller-Thurgau, as well as about their relationships with the main skin monoterpenols and other compounds, including two unidentified stereoisomeric sesquiterpenes present only in distillates, were discussed. Finally, results of PCA data treatments as for the distillates are show

    DOPAL derived alpha-synuclein oligomers impair synaptic vesicles physiological function

    Get PDF
    Parkinson's disease is a neurodegenerative disorder characterized by the death of dopaminergic neurons and by accumulation of alpha-synuclein (aS) aggregates in the surviving neurons. The dopamine catabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) is a highly reactive and toxic molecule that leads to aS oligomerization by covalent modifications to lysine residues. Here we show that DOPAL-induced aS oligomer formation in neurons is associated with damage of synaptic vesicles, and with alterations in the synaptic vesicles pools. To investigate the molecular mechanism that leads to synaptic impairment, we first aimed to characterize the biochemical and biophysical properties of the aS-DOPAL oligomers; heterogeneous ensembles of macromolecules able to permeabilise cholesterol-containing lipid membranes. aS-DOPAL oligomers can induce dopamine leak in an in vitro model of synaptic vesicles and in cellular models. The dopamine released, after conversion to DOPAL in the cytoplasm, could trigger a noxious cycle that further fuels the formation of aS-DOPAL oligomers, inducing neurodegeneration

    Site-Directed Mutagenesis to Assess the Binding Capacity of Class S Protein of Staphylococcus aureus Leucotoxins to the Surface of Polymorphonuclear Cells

    Get PDF
    Staphylococcal leucotoxins result from the association of class S components and class F component inducing the activation and the permeabilization of the target cells. Like α-toxin, the leucotoxins are pore-forming toxins with more than 70% β-sheet. This was confirmed by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. In addition, threonine 28 of a predicted and conserved β-sheet at the N-terminal extremity of class S proteins composing leucotoxins aligns with histidine 35 of α-toxin, which has a key role in oligomerization of the final pore. Flow cytometry was used to study different aminoacid substitutions of the threonine 28 in order to evaluate its role in the biological activity of these class S proteins. Finally, results show that threonine 28 of the leucotoxin probably plays a role similar to that of histidine 35 of α-toxin. Mutations on this threonin largely influenced the secondary interaction of the class F component and led to inactive toxin

    Single-molecule FRET studies on alpha-synuclein oligomerization of Parkinson's disease genetically related mutants.

    Get PDF
    Oligomers of alpha-synuclein are toxic to cells and have been proposed to play a key role in the etiopathogenesis of Parkinson's disease. As certain missense mutations in the gene encoding for alpha-synuclein induce early-onset forms of the disease, it has been suggested that these variants might have an inherent tendency to produce high concentrations of oligomers during aggregation, although a direct experimental evidence for this is still missing. We used single-molecule Förster Resonance Energy Transfer to visualize directly the protein self-assembly process by wild-type alpha-synuclein and A53T, A30P and E46K mutants and to compare the structural properties of the ensemble of oligomers generated. We found that the kinetics of oligomer formation correlates with the natural tendency of each variant to acquire beta-sheet structure. Moreover, A53T and A30P showed significant differences in the averaged FRET efficiency of one of the two types of oligomers formed compared to the wild-type oligomers, indicating possible structural variety among the ensemble of species generated. Importantly, we found similar concentrations of oligomers during the lag-phase of the aggregation of wild-type and mutated alpha-synuclein, suggesting that the properties of the ensemble of oligomers generated during self-assembly might be more relevant than their absolute concentration for triggering neurodegeneration.LT has been recipient of a grant PAT Post Doc Outgoing 2009 – 7th Framework Program Marie Curie COFUND actions. NC was funded by a Royal Society Dorothy Hodgkin Research Fellowship and is currently a Ramón y Cajal Research Fellow (Spanish Ministry of Economy and Competitiveness). MHH thanks the Royal Society of Chemistry (Analytical Chemistry Trust Fund) for his studentship. AJD is funded by the Schiff Foundation.This is the final version of the article. It first appeared from NPG via http://dx.doi.org/10.1038/srep1669

    Fast flow microfluidics and single-molecule fluorescence for the rapid characterization of α-synuclein oligomers.

    Get PDF
    α-Synuclein oligomers can be toxic to cells and may be responsible for cell death in Parkinson's disease. Their typically low abundance and highly heterogeneous nature, however, make such species challenging to study using traditional biochemical techniques. By combining fast-flow microfluidics with single-molecule fluorescence, we are able to rapidly follow the process by which oligomers of αS are formed and to characterize the species themselves. We have used the technique to show that populations of oligomers with different FRET efficiencies have varying stabilities when diluted into low ionic strength solutions. Interestingly, we have found that oligomers formed early in the aggregation pathway have electrostatic repulsions that are shielded in the high ionic strength buffer and therefore dissociate when diluted into lower ionic strength solutions. This property can be used to isolate different structural groups of αS oligomers and can help to rationalize some aspects of αS amyloid fibril formation.M.H.H. thanks the Royal Society of Chemistry (Analytical Chemistry Trust Fund) for his studentship. L.T. has been the recipient of a grant PAT Post Doc Outgoing 2009 – 7th Framework Program Marie Curie COFUND actions. A.J.D. is funded by the Schiff Foundation.This is the author accepted manuscript. The final version is available from ACS via http://dx.doi.org/10.1021/acs.analchem.5b0181

    Modeling the Longitudinal Asymmetry in Sunspot Emergence -- the Role of the Wilson Depression

    Full text link
    The distributions of sunspot longitude at first appearance and at disappearance display an east-west asymmetry that results from a reduction in visibility as one moves from disk centre to the limb. To first order, this is explicable in terms of simple geometrical foreshortening. However, the centre-to-limb visibility variation is much larger than that predicted by foreshortening. Sunspot visibility is also known to be affected by the Wilson effect: the apparent dish shape of the sunspot photosphere caused by the temperature-dependent variation of the geometrical position of the tau=1 layer. In this article we investigate the role of the Wilson effect on the sunspot appearance distributions, deducing a mean depth for the umbral tau=1 layer of 500 to 1500 km. This is based on the comparison of observations of sunspot longitude distribution and Monte Carlo simulations of sunspot appearance using different models for spot growth rate, growth time and depth of Wilson depression.Comment: 18 pages, 10 figures, in press (Solar Physics

    The new COST Action European Venom Network (EUVEN)—synergy and future perspectives of modern venomics

    Get PDF
    Venom research is a highly multidisciplinary field that involves multiple subfields of biology, informatics, pharmacology, medicine, and other areas. These different research facets are often technologically challenging and pursued by different teams lacking connection with each other. This lack of coordination hampers the full development of venom investigation and applications. The COST Action CA19144–European Venom Network was recently launched to promote synergistic interactions among different stakeholders and foster venom research at the European level
    corecore