67 research outputs found

    Quantum State Discrimination on Reconfigurable Noise-Robust Quantum Networks

    Get PDF
    A fundamental problem in Quantum Information Processing is the discrimination amongst a set of quantum states of a system. In this paper, we address this problem on an open quantum system described by a graph, whose evolution is defined by a Quantum Stochastic Walk. In particular, the structure of the graph mimics those of neural networks, with the quantum states to discriminate encoded on input nodes and with the discrimination obtained on the output nodes. We optimize the parameters of the network to obtain the highest probability of correct discrimination. Numerical simulations show that after a transient time the probability of correct decision approaches the theoretical optimal quantum limit. These results are confirmed analytically for small graphs. Finally, we analyze the robustness and reconfigurability of the network for different set of quantum states, and show that this architecture can pave the way to experimental realizations of our protocol as well as novel quantum generalizations of deep learning

    Receiver Design for Quantum Communication

    Get PDF
    Born about a century ago, Quantum Mechanics has revolutionized the description and the interpretation of Physics at sub-microscopic level. In the last decades, due to the influence of mathematical and engineering research fields, Quantum Mechanics has given birth to related research areas like Quantum Computation, Quantum Information and Quantum Communication. With the discovery of the laser, and later the development of fiber optics and satellite networks, Quantum Communication and Quantum Optics seems to have a natural field of application in Communication Systems. Despite this, the interest in this technology and studies for communication purpose has been overshadowed by the great results in communication networks achieved in the last decades with classical paradigms. However, due to the increasing demand of communication data rate, system designers are now looking at Quantum Mechanics for new and more performanting solutions in communication purposes. Early theoretical studies on Quantum Discrimination Theory and Quantum Information predict better performance for Communication Systems that take advantage of the quantum laws. In addition, Quantum Mechanics provides the deepest description of the physical phenomena, and there are scenarios where a quantum model fits best, as in in deep space communications, where the received signal is really weak, or in a satellite networks, where we are interested in strongly reducing the power of transmitted signals, possibly without sacrificing performance significantly. However, if on one side Quantum Communication Theory promises great gains in the performance of communication systems, on the other hand it fails to describe how to implement physical devices that reach these ultimate limits. So far, only a few architectures achieving these performances are known, and only for simple modulation formats. We are interested in the scenario of optical communications, where the message transmitted is encoded in a sequence of coherent states. Transmitter devices for coherent modulation are well known and consist in laser pulse generators. Instead, receiver implementations working at the quantum limit performance limit are yet to be found. In this Thesis I deal with different topics in the quantum transmission scenario. First, I review existing classical (suboptimal) and quantum (suboptimal and optimal) receiver schemes for the binary coherent modulation. I present a new formulation of the optimal scheme known as Dolinar Receiver with the multiple copies problem, focusing on the information gained during the measurement. Second, I analyze the binary communication in a noisy environment, studying the error probability and the capacity of the binary channel induced. Given the description of the quantum channel, I optimize both the transmitted quantum states and the measurement operators employed in the communication. Third, I consider the Pulse Position Modulation, that is particularly suitable for space and satellite communication due to its simplicity of implementation and high capacity. I review some known suboptimal receivers, and I propose a receiver scheme which approaches the limit performance predicted with quantum theory outperforming the existing schemes. To sum up the results of this Thesis, in order to approach the limit performance predicted by Quantum Mechanics, an optimization is always necessary to exceed the classical effects and trigger the quantum phenomena. In particular, the information gained during the measurement plays an important role, for example in the definition of adaptive receivers. In this Thesis both these aspects have been deeply investigated

    Quantum reinforcement learning: the maze problem

    Get PDF

    Role of the filter functions in noise spectroscopy

    Full text link
    The success of quantum noise sensing methods depends on the optimal interplay between properly designed control pulses and statistically informative measurement data on a specific quantum-probe observable. To enhance the information content of the data and reduce as much as possible the number of measurements on the probe, the filter orthogonalization method has been recently introduced. The latter is able to transform the control filter functions on an orthogonal basis allowing for the optimal reconstruction of the noise power spectral density. In this paper, we formalize this method within the standard formalism of minimum mean squared error estimation and we show the equivalence between the solutions of the two approaches. Then, we introduce a non-negative least squares formulation that ensures the non-negativeness of the estimated noise spectral density. Moreover, we also propose a novel protocol for the design in the frequency domain of the set of filter functions. The frequency-designed filter functions and the non-negative least squares reconstruction are numerically tested on noise spectra with multiple components and as a function of the estimation parameters

    Characterization of entangling properties of quantum measurement via two-mode quantum detector tomography using coherent state probes

    Get PDF
    Entangled measurement is a crucial tool in quantum technology. We propose a new entanglement measure of multi-mode detection, which estimates the amount of entanglement that can be created in a measurement. To illustrate the proposed measure, we perform quantum tomography of a two-mode detector that is comprised of two superconducting nanowire single photon detectors. Our method utilizes coherent states as probe states, which can be easily prepared with accuracy. Our work shows that a separable state such as a coherent state is enough to characterize a potentially entangled detector. We investigate the entangling capability of the detector in various settings. Our proposed measure verifies that the detector makes an entangled measurement under certain conditions, and reveals the nature of the entangling properties of the detector. Since the precise characterization of a detector is essential for applications in quantum information technology, the experimental reconstruction of detector properties along with the proposed measure will be key features in future quantum information processing.Comment: 18 pages, 6 figure
    • …
    corecore