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Abstract: Entangled measurement is a crucial tool in quantum technology. We propose a new
entanglement measure of multi-mode detection, which estimates the amount of entanglement
that can be created in a measurement. To illustrate the proposed measure, we perform quantum
tomography of a two-mode detector that is comprised of two superconducting nanowire single
photon detectors. Our method utilizes coherent states as probe states, which can be easily
prepared with accuracy. Our work shows that a separable state such as a coherent state is enough
to characterize a potentially entangled detector. We investigate the entangling capability of the
detector in various settings. Our proposed measure verifies that the detector makes an entangled
measurement under certain conditions, and reveals the nature of the entangling properties of the
detector. Since the precise characterization of a detector is essential for applications in quantum
information technology, the experimental reconstruction of detector properties along with the
proposed measure will be key features in future quantum information processing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Measurement device or technique is at the heart of rapidly developing quantum technologies, such
as ultra-accurate sensing [1], absolutely secure or high-capacity communication [2,3], quantum
computation [4], and quantum simulation [5]. While it is imperative to develop accurate and
efficient measurement devices to observe quantum phenomena, measurements are also employed
as part of the quantum process. There are several such examples; a linear optics quantum
computation scheme that utilizes photon detections to achieve universal computation [6], one-way
quantum computation that employs a gigantic entangled state and successive measurements for
computation [7–9], and the creation of non-classical states such as Schrödinger cat states by
projection onto number states [10–12].
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Among the variety of quantum measurements in various settings, an entangled measurement
(i.e., a projection onto an entangled basis) is a particularly important class of measurements.
The Bell measurement is a typical example of an entangled measurement, which is a projective
measurement on one of four Bell states (maximally entangled states of two qubits). The Bell
measurement is one of the most fundamental building blocks for quantum information processing,
and is highlighted in quantum teleportation [13,14], entanglement swapping [15,16], quantum
repeaters [17,18], quantum key distribution [19], and quantum parameter estimation [20]. The
entangling capability of a Bell measurement has a significant effect on the performances of these
protocols.
Entangled measurements in the field of photonic quantum technology can be realized with a

beam splitter network followed by single-mode detectors. By properly designing the beam splitter
network and the number of detectors, various entangled measurements are implemented. This
type of assembled entangled detector is well understood by analyzing the individual components
and the overall structure.
On the other hand, there is a situation where we do not have any knowledge on the internal

structure of a multi-mode measurement. Note that an actual detector normally has sensitivity over
multiple modes including temporal, frequency, spatial, and polarization. Thus an actual detector
may be considered as a multi-mode detector if we do not implement careful mode filtering to
eliminate unwanted modes from entering the detector.
A possible interference between multiple modes inside a detector may lead to an entangled

projection, typically ignored as a standard practice. Therefore, the detailed characterization of
detectors, including a proper measure of entanglement, is of practical importance and of potential
use in quantum information applications, as well as fundamental quantum physics.
In this paper, we propose a new entanglement measure of a detector. This measure uncovers

entanglement creatable by the act of measurement in a situation like entanglement swapping. The
proposed entanglement measure is intuitive and easy to calculate from Positive-Operator-Valued
Measures (POVMs) of the detector [4,21].

We experimentally demonstrate two-mode quantum detector tomography by utilizing coherent
states. Quantum detector tomography typically utilizes well-qualified photon number states or
coherent states, depending on the experimental system [22,23]. Since the experimental cost of
preparing coherent states is less expensive than photon number states, coherent states are more
suitable for quantum detector tomography involving huge parameters (e.g., ∼ 1.8 × 106 in [24]).
However, detector tomography using coherent states has not yet been demonstrated for entangled
measurements.
In this paper, with coherent state probes, we characterize a polarization two-mode detector

consisting of two superconducting nanowire single photon detectors (SNSPDs), which emulates
various two-mode detectors. We reconstruct the POVMs of these detectors, and show under what
conditions a detector can make an entangled measurement. We note that Roccia et al. [25] have
demonstrated detector tomography of Bell measurements by utilizing qubits as input states, and
estimated precisions of multiparameter estimations with the reconstructed measurements. In
contrast to their work, our demonstration of the proposed entanglement measure focuses more
on the general characterization of a detector, with implications in a wider range of quantum
applications involving entanglement creation via measurements.
Our experimental results show that a completely mixed measurement of two orthogonal

entangled measurements does not create entanglement. However, asymmetric measurements
induced by photon loss may create entanglement. Furthermore, we characterize an SNSPD
that has asymmetric polarization sensitivities. These results, along with our developed detector
tomography techniques and proposed measure, give a deeper understanding and quantification of
detector measurements, which is useful in numerous complex quantum applications.
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2. Results

2.1. Proposed entanglement measure of a POVM

Here we introduce our proposed entanglement measure. We assume a two-mode measurement
where each mode has a d-dimensional Hilbert space. The measurement is fully described by a two-
mode POVM {Π̂(i)A,B}. The probability of obtaining outcome i is represented as pi = Tr[ρ̂A,BΠ̂(i)A,B],
where ρ̂A,B is the density matrix of an input bipartite state consisting of modes A and B. In order
to quantify the entangling capability of a detector, we define the entanglement measure of a
POVM as,

M(Π̂(i)A,B) ≡ E
©«
Π̂
(i)
A,B

Tr
[
Π̂
(i)
A,B

] ª®®¬ , (1)

where E represents an entanglement measure of a state. Note that a normalized POVM is
mathematically the same as a density operator as it is a positive semidefinite and has a unit trace.
Any entanglement measure of a state is applied to the normalised POVM if it is invariant under
local unitary operations (see Appendix for details). In this paper, the logarithmic negativity ELN
is chosen because of the easiness of numerical calculation [26,27].
The logarithmic negativity of a quantum state is defined as ELN(ρ̂A,B) = log2

ρ̂TBA,B, where
TB is a partial transpose of mode B [28], and a trace norm is defined as ‖X‖ ≡ Tr

√
X†X, which

corresponds to the sum of absolute values of the eigenvalues of X. The entanglement measure
MLN is greater than or equal to zero. Only when the measurement is separable (Π̂A,B = Π̂A ⊗ Π̂B),
MLN reaches zero. Otherwise it indicates the inseparability of the measurement.

2.2. Interpretation of proposed entanglement measure

Next, we consider the meaning of this measure, and justify that the inseparability of the POVM
is related to the entangling properties of the measurement. Let us apply a two-mode (or joint)
measurement on two bipartite entangled pairs, as shown in Fig. 1. We assume that A-B and C-D
are maximally entangled bipartite states. We perform a two-mode projective measurement on B
and C, and then consider the created entanglement between A and D. After simple algebraic
calculations, we find that the remaining state after measurement is proportional to the transposed
POVM, up to local unitary operations (see Appendix). Thus our proposed entanglement measure
corresponds to entanglement of a state after the measurement under the condition that E is
invariant under local unitary operations,

M(Π̂(i)B,C) = E(ρ̂(i)A,D), (2)

where ρ̂(i)A,D = TrB,C
[
ρ̂Π̂
(i)
B,C

]
/pi is the remaining state after measurement, pi = Tr

[
ρ̂Π̂
(i)
B,C

]
is the probability of obtaining an outcome i, and the initial state ρ̂ consists of two arbitrary
maximally entangled pairs. The inseparability of the POVM is directly related to the maximum
entanglement created by the measurement. It is worth noting that we consider conditionally
created entanglement with the outcome i of measurements. Although entanglement may be
created conditionally by local operation and classical communications (LOCC), i.e., entanglement
distillation [29], it is restricted to the case where modes A and D have initial (weak) entanglement.
In our current scheme, LOCC cannot create entanglement between A and D even conditionally,
because there is no initial entanglement. Thus the inseparability of the POVM, i.e., the created
entanglement after the measurement, truly proves that the measurement is non-local and capable
of creating entanglement.

We note again that our entanglement measure is defined for each POVM element. Entanglement
creatable by the measurement may differ for each POVM element, i.e., the entanglement depends
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Fig. 1. Two-mode measurement on two bipartite entangled states (i.e., entanglement
swapping). Each circle and link between circle represent a quantum state and quantum
entanglement, respectively. The inseparability of a two-mode detector is directly related to
the maximum entanglement between modes A and D, created by the measurement on modes
B and C.

on the measurement outcome i. In the sense of characterizing the entangling capability of the
detector (not each POVM element), it is also possible to consider the averaged entanglement
measure of a POVM (e.g.,

∑
i piM(Π̂(i))) by assuming the particular set of inputs.

2.3. Experiment: two-mode quantum detector tomography with coherent states

In order to demonstrate the usefulness of our entanglementmeasure of a POVM,we experimentally
construct various two-mode quantum detectors. We then reconstruct the POVMs via quantum
detector tomography utilizing coherent states as inputs. We stress that our aim is not to generate
entangled states by the measurements, or to characterize the entangled state. Our goal is to
characterize the multi-mode detector and reveal its entangling capability. Therefore, our focus is
on investigating what kind of measurement has the ability of creating entanglement.

Figure 2(a) shows an abstract illustration of two-mode quantum detector tomography. POVMs
are reconstructed via the relationship of pi = Tr[ρ̂Π̂(i)], where the probability pi is experimentally
obtained and ρ̂ is the known input states (i.e., this is an inverse problem). Coherent states provided
by a laser may be a good input probe because they can be easily prepared with well-defined
amplitudes and phases. Interestingly, a separable state such as a product of coherent states is
enough to characterize a possibly entangled detector. However, since we are reconstructing the
POVM coefficients in the number state basis, care must be taken into account when truncating
the number state representation of the coherent states, resulting in a limitation of the available
amplitudes.
We record detector outcomes for various input states, and then solve a convex optimization

problem to obtain the POVMs [23–25,30–35]. The amount of input (coherent) states depends
on the degrees of freedom of the POVMs, and additional constraints reduce the complexity of
the reconstruction. For simplicity, we assume that a two-mode detector has no phase reference
for inputs (i.e., global phase insensitive detector), but it may have the sensitivity for the relative
phase δ between two-mode inputs. In this case, we can omit the global phase of two-mode input
(coherent) states. The general two-mode coherent state without global phase is expressed as��|α |, |β |eiδ〉 (δ ∈ R), which is expanded in the photon number basis as,

��|α |, |β |eiδ〉 = exp
[
−
1
2

(
|α |2 + |β|2

)] ∞∑
m,n

|α |m |β |neinδ
√
m!n!

|m, n〉 . (3)
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Fig. 2. Characterization of multi-mode detector. (a) Abstract illustration of two-mode
quantum detector tomography. Input states are two-mode coherent states |α〉 |β〉. α and
β are complex amplitudes of each coherent state. (b) Experimental setup. (c) Details of
input states preparation. Input coherent states are horizontally and vertically polarization
two-modes |α〉H |β〉V within an optical beam. PBS, Polarization Beam Splitter; H, Half
Wave Plate; Q, Quarter Wave Plate; ND, Neutral Density Filter; SNSPD, Superconducting
Nanowire Single Photon Detector. Optical beams are transmitted through single-mode
optical fibers except inside a fiber bench.
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The minimal set of inputs can be derived from the analytical expression of the POVM (see
Appendix). We also assume that each input mode has a two-dimensional Hilbert space (d = 2),
and the POVM is represented with a 4 by 4 matrix, Π(i) = Σ π(i)k,l,m,n |k, l〉〈m, n| (k, l, m, n =
0 or 1), which is the minimum dimension to calculate our entanglement measure of a POVM.
However, we first reconstruct a 6 by 6 matrix representation, and then truncate it to a 4 by 4
matrix. This is because an input coherent state with a non-negligible amount of |1, 1〉 element
has |0, 2〉 or |2, 0〉 elements with the same order of magnitude due to the Poisson photon statistics
of a coherent state. Note that the POVM with a 6 by 6 matrix representation is not directly used
for quantifying entanglement because it is not decomposed into two subsystems.

2.4. Experimental setup of two-mode detector tomography

Figure 2(b) shows our experimental setup. We employ a continuous-wave (CW) fiber coupled
laser at 1548.56 nm as the primary light source. The input state is a weak coherent state
with an average photon number much less than one. The yellow dashed box in Fig. 2(b) and
Fig. 2(c) correspond to the preparation of input states. After the polarization beam splitter
(PBS1), the horizontally polarized beam with power P, described as |

√
P〉H |0〉V , is converted

into | |α |〉H
��|β |eiδ〉V via a quarter wave plate (QWP2) and a half wave plate (HWP2), denoted as

Q2 and H2 respectively. We use 19 sets of coherent states for the inputs, which are represented by
the parameters in the set,

{(|α |, |β |, δ)} =

{
(0, 0,−),

(√
P1
2 ,

√
P1
2 ,

m1π
4

)
,
(√

P1, 0,−
)
,
(
0,

√
P1,−

)
,(√

P2
4 ,

√
3P2
4 , m2π

2

)
,
(√

3P2
4 ,

√
P2
4 ,

m2π
2

) ����m1 = {0, 1, . . . , 7},m2 = {0, 1, 2, 3}

}
,

(4)

where we use a vacuum input and two powers, P1 = 0.20 photons and P2 = 0.05 photons. Note
that we decide to employ a slightly larger number of coherent states than the minimum number of
14, which corresponds to the degrees of freedom of POVMs with a 6 by 6 matrix representation
under the constraint of global phase insensitivity π(i)k, l, m, n = 0 (k + l , m + n), to simplify the
rotating angles of two wave plates (see Table 1 in Appendix).

The dashed purple box in Fig. 2(b) corresponds to the two-mode quantum detector comprising
of two SNSPDs (Photon Spot, Inc.), PBS2, multiple wave plates and a neutral density (ND)
filter. Our detector emulates various two-mode measurements by introducing loss in one channel.
The polarization of the input beam is first rotated by HWP0 with the azimuth angle of 22.5◦,
which changes, for example, a horizontally polarized beam into a diagonally polarized beam.
PBS2 following HWP0 splits the optical beam into two spatially separated beams. Various ND
filters with corresponding loss L are inserted in one of the two beams. Two optical beams are
then injected into two SNSPDs through single-mode optical fibers. Note that we maximize the
quantum efficiencies of the SNSPDs by rotating QWP3,4 and HWP3,4 placed after PBS2. The
photon counting signals from the two SNSPDs are then sent to a logical OR gate, and the final
detector output is obtained as an on/off signal.
This detector has two extreme settings, i.e., separable measurement or maximally entangled

measurement. First let us assume that we do not have an ND filter in the beam (L = 0).
If the input beam has at most one photon, the photon detection at SNSPD1(2) is actually a
projection onto the single-rail encoded Bell state |Ψ+〉 (|Ψ−〉) up to one photon elements
π
(i)
k, l, m, n(max(k + l, m + n) ≤ 1), where |Ψ±〉 = (|1〉H |0〉V ± |0〉H |1〉V )/

√
2. For example, this

detector can be used as a projective measurement in an entanglement swapping experiment, as
shown in Fig. 3. We note that the higher photon number POVM elements would differ from a
projection onto the Bell state due to the lack of photon number resolution. After detection by
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Fig. 3. Example of an entanglement swapping setup by single-rail encoding. Mode A (C)
and mode B (D) are encoded as horizontally and vertically polarized beams, respectively. Our
two-mode quantum detector described in Fig. 2(b) can be used as a projective measurement
on modes B and C.

the SNSPDs, we apply a logical OR operation to the outcome signals. Therefore, the detector
outcomes do not tell us which SNSPD detected a photon, as long as the two SNSPDs have the
same quantum efficiency. Therefore, the detector is a fully separable measurement mixing two
projections onto |Ψ+〉 and |Ψ−〉. By stark contrast, the detector becomes a maximally entangled
measurement when we block one of the beams (i.e., L = 1). This corresponds to the Bell
measurement projecting onto either |Ψ+〉 or |Ψ−〉 up to one photon elements. In addition, by
changing the ND filter (0 < L < 1), we can continuously realize an in-between setting for the
measurement type. Note, again, that our maximally entangled measurement is not exactly the
same as a true Bell measurement due to the lack of photon number resolution.

Our overall detector, i.e., the outcome after the logical OR operation, is an on/off detector, so
it only has two POVMs, Π̂(on) and Π̂(off). We reconstruct one POVM, Π̂(on), under the constraint
0 ≤ Π̂(on) ≤ 1̂, and then calculate the other POVM, Π̂(off) = 1̂ − Π̂(on), so that the completeness
relation of the POVMs is automatically satisfied.

In our setup, we use a CW laser rather than a pulsed laser, which was used in previous detector
tomography experiments [23,24,30–35]. Compared with pulsed laser experiments, continuous
wave lasers have an additional degree of freedom, i.e., we can arbitrarily determine a temporal
mode of a quantum state. Since the detector characteristics are dependent on the temporal mode
of an input state, this degree of freedom gives us an additional capability of characterization of a
detector. In our experiment, we set the temporal mode as a square shape with the width of 1 µs
for simplicity. Note that the dead time of SNSPDs (∼40 ns) is negligible since it is much shorter
than the width of the wave packets. The dark counts of our detectors are below 200 counts per
second. Since we choose 1 µs wave packet, the dark count per wave packet is less than 2 × 10−4.
Thus, the effect of the dark count is negligible in the current experiment.

We record 100,000 measurement outcomes with a 1 µs time window for each input state
(1,900,000 outcomes in total) to reconstruct the POVMs. We repeat each measurement run six
times to derive experimental error bars (standard deviations) of the reconstructed POVMs.

2.5. Reconstructed POVMs

Figure 4(a) shows the reconstructed POVM Π̂(on) without an ND filter (L = 0), which corresponds
to a fully separable measurement. In the following, we omit the subscriptions denoting
polarization modes for simplicity, |k, l〉 ≡ |k〉H |l〉V and 〈m, n| ≡ H〈m|V〈n|. This measurement
can be considered as a mixture of projections onto two Bell states, 1

2 |Ψ
+〉〈Ψ+ | + 1

2 |Ψ
−〉〈Ψ− | =

|1, 0〉〈1, 0| + |0, 1〉〈0, 1|, if the input beam has up to one photon per wavepacket. The diagonal
elements of |1, 0〉〈1, 0| and |0, 1〉〈0, 1| are 0.209 ± 0.007, and 0.201 ± 0.008, respectively, which
correspond to the quantum efficiencies of the two SNSPDs. Those values agree with the
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(a) Separable measurement (L = 0) (b) Entangled measurement (L = 1)

(e) With ND filter (L = 75.4%) (f) Without PBS2

(c) With ND filter (L = 16.6%) (d) With ND filter (L = 49.1%)
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Fig. 4. Reconstructed two-mode detector POVMs corresponding to “on”. (a) Separa-
ble measurement with L = 0 (no ND filter). (b) Entangled measurement with L = 1
(blocking the reflected beam from PBS2). (c)-(e) Other measurements with ND filters
L = 16.6%, 49.1%, 75.4%. (f) Measurement without PBS2. We omit the subscriptions
denoting polarization modes for simplicity, |k, l〉 ≡ |k〉H |l〉V and 〈m, n| ≡ H〈m|V〈n|.

theoretical predictions of 20 ± 1%, which includes optical losses such as coupling inefficiency
at the fiber coupler; the quantum efficiencies of the SNSPDs themselves are around 30%. We
obtain 99.9 ± 0.05% fidelity between the experimental and theoretical POVMs, which are derived
by including the SNSPDs’ finite quantum efficiencies and optical losses of the detector. This
verifies the high accuracy of our reconstruction.

Figure 4(b) shows the reconstructed POVM of the entangled measurement. In this case, we
introduce 100% loss (L = 1) at one SNSPD. This measurement can be considered as a projection
onto the Bell state, |Ψ+〉〈Ψ+ | = (|1, 0〉〈1, 0| + |1, 0〉〈0, 1| + |0, 1〉〈1, 0| + |0, 1〉〈0, 1|)/2, if the
input beam has up to one photon per wavepacket. The reconstructed POVM has non-zero
off-diagonal elements in contrast to the POVM of the separable measurement in Fig. 4(a), which
is evidence of the measurement’s entangling properties. The calculated fidelity is 99.5 ± 0.5%.
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Figures 4(c)–4(e) show the reconstructed POVM of other measurements with ND filters.
Corresponding losses are Fig. 4(c) 16.6%, 4(d) 49.1%, and 4(e) 75.4%. We also perform
experiments by removing PBS2 from the setup shown in Fig. 2(b). Figure 4(f) is the result
without PBS2. In this configuration, the detector consists of only a single SNSPD1 and does not
have an artificial polarization-selective component. Thus, the reconstructed POVM represents
the characteristics of the SNSPD itself.

2.6. Photon detection probability for a maximally mixed state

From the reconstructed POVMs, we can calculate the photon detection probabilities (i.e., the
success probability of creating entanglement) for a particular input. As an example, we assume
that the input state is fully randomized among |0, 0〉, |1, 0〉, |0, 1〉, and |1, 1〉, that is, a maximally
mixed state

∑
k, l∈{0,1} |k, l〉〈k, l|/4. In this case, the photon detection probability is calculated

from a trace of the POVM normalized by the dimension.
Figure 5 shows the calculated photon detection probabilities of reconstructed POVMs as a

function of the inserted loss L. The red crosses (i) show the experimental results, which show
good agreements with the theory curve (ii) derived by taking into account the finite quantum
efficiencies. The blue dash-dotted line (iii) is the theoretical curve assuming 100% quantum
efficiencies. At zero loss L = 0, the photon detection probability is 0.75, which means that the
photon can be detected except for the case of the vacuum input. As the inserted loss increases,
the probability decreases steadily, and it finally reaches 3/8 = 0.375 at L = 1. Note that the
photon detection probability without PBS2 is 0.225 ± 0.005.

Fig. 5. Photon detection probabilities of the reconstructed POVMs for a maximally mixed
state. (i) Experimental results for various channel losses. Theoretical prediction curves (ii)
with actual quantum efficiencies and (iii) ideal quantum efficiencies.

2.7. Entanglement measure of reconstructed POVMs

Figure 6 shows the entanglement measure MLN(Π̂
(on)) as a function of the inserted loss L. Trace

(i) shows the lower bound of zero, which indicates a separable or non-entangled measurement.
The red crosses (ii) show the experimental results. At zero loss L = 0, MLN is zero, meaning
a fully separable measurement. By increasing losses L in one channel, MLN increases until it
reaches a maximum of 0.25±0.05 at L = 1. This behavior may be counterintuitive because losses
generally degrade entanglement. This result, however, indicates that some form of asymmetry
is necessary to create entanglement. In the current setting, the selectivity of two orthogonal
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Fig. 6. Logarithmic negativities of the POVMs. (i) Bound for non-entangled measurement.
(ii) Experimental results for various channel losses. Theoretical prediction curves (iii) with
actual quantum efficiencies and (iv) ideal quantum efficiencies. (v) Experimental result
without PBS2.

projective measurements (|Ψ+〉 and |Ψ−〉) is key to generate the entangled projection, and it is
achieved by introducing loss in one channel.
The experimental results are well within error of the theory curve (iii), which is derived by

taking into account the finite quantum efficiencies. The blue dash-dotted line (iv) is the theoretical
curve assuming 100% quantum efficiencies. Note that this measurement cannot reach unity even
with 100% detection efficiencies, which can only be obtained by a true Bell measurement. This
is due to the |1, 1〉〈1, 1| element of the POVMs that are non-zero for our detector, which would
be zero for a true Bell measurement. This non-zero |1, 1〉〈1, 1| element is attributed to the lack
of photon number resolution by the SNSPDs.
The measurement result without PBS2 isMLN = 0.009 ± 0.004. The non-zeroMLN implies

that an SNSPD itself could be an entangled measurement. This entangling capability stems from
the asymmetric quantum efficiencies of two polarization modes in an SNSPD. This is the same
situation as two SNSPDs with a finite loss L in the previous results. The ratio of the quantum
efficiencies for orthogonal polarizations is measured as 0.721, corresponding to L = 0.279. The
red data point (v) shows the experimental result plotted at L = 0.279, which is on the theoretical
curve of (iii). We note that, in addition to the asymmetry of the polarization sensitivities, the
polarization mixing at HWP0 is essential for the non-zeroMLN . The entangled measurement is
attributed to multi-mode interference and the choice of a particular projection basis.

3. Conclusion

We proposed an entanglement measure of a detector, and applied it to a two-mode detector.
Our newly proposed measure represents the detector’s ability to create entanglement. The
experimental results imply that the entangling properties of the measurement stem from an
asymmetry inside the detector. Our detector tomography technique and proposed measure can
be extended to more than two modes, as well as to other physical modes such as frequency
and temporal. Precise characterization of the measurement detector employed is essential for
applications in quantum information processing. These experimental demonstrations, along with
our proposed measure, will be useful in future quantum information technologies.
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Appendix A. Entanglement created by measurement

We will explain how entanglement created by measurement is related to its POVM. As explained
in the Results section, we assume that we have two pairs of maximally entangled states. We apply
a two-mode measurement on them, and then examine the entanglement of the post-measurement
state.
We assume d-dimensional Hilbert space for each mode. Arbitrary maximally entangled

bipartite states are expressed with a particular maximally entangled state and local unitary
operators as,

|ψM〉 =
(
ÛA ⊗ V̂B

) ��Φ+〉A,B (5)

=
1
√
d

∑
µ,ν,n

uµ,nvν,n |µ, ν〉A,B , (6)

where |Φ+〉 = 1√
d

∑
n |n, n〉, and ÛA (V̂B) is a local unitary operator for mode A (B) [21]. uµ,n

and vν,n are the coefficients describing these unitary operators, i.e., Û |n〉 =
∑

µ uµ,n |µ〉 and
V̂ |n〉 =

∑
ν vν,n |ν〉.

We have two pairs of maximally entangled states |ψ1〉 and |ψ2〉 as,

ρ̂ = |ψ1〉〈ψ1 |A,B ⊗ |ψ2〉〈ψ2 |C,D, (7)

|ψ1〉A,B =
1
√
d

(
Û(1)A ⊗ V̂ (1)B

) ∑
n1

|n1, n1〉A,B , (8)

|ψ2〉C,D =
1
√
d

(
Û(2)C ⊗ V̂ (2)D

) ∑
n2

|n2, n2〉C,D , (9)

where ρ̂ is the initial four-mode state. We apply a joint measurement on modes B and C. The
POVM of the joint measurement is expressed as,

Π̂B,C =
∑
i,j,k,l

πi,j,k,l |i, j〉〈k, l|B,C. (10)

Here we omit the superscript denoting the measurement outcome for simplicity.
The remaining state after the measurement is calculated as,

TrB,C
[
ρ̂ Π̂B,C

]
=

∑
s,t
〈s, t|B,C ρ̂ Π̂B,C |s, t〉B,C

=
∑

s,t,i,j,k,l
〈s, t|B,C ρ̂ πi,j,k,l |i, j〉B,C 〈k, l|s, t〉

=
∑
i,j,k,l
〈k, l|B,C ρ̂ πi,j,k,l |i, j〉B,C

=
1
d2

∑
i,j,k,l,n1,n2,n′1,n

′
2

πi,j,k,l

(
Û(1)A ⊗ V̂ (2)D

) [
〈k, l|B,C

(
V̂ (1)B ⊗ Û(2)C

)
|n1, n2〉B,C

]
×

[
〈n′1, n

′
2 |B,C

(
V̂ (1)B ⊗ Û(2)C

)†
|i, j〉B,C

] [
|n1, n2〉〈n′1, n

′
2 |A,D

(
Û(1)A ⊗ V̂ (2)D

)†]
,

(11)

where TrB,C is a partial trace regarding modes B andC. Note that this expression is not normalized.
Let us first calculate the part of Eq. (11),∑

n1,n2

〈k, l|B,C
(
V̂ (1)B ⊗ Û(2)C

)
|n1, n2〉B,C |n1, n2〉A,D =

∑
n1,n2

v(1)k,n1u
(2)
l,n2 |n1, n2〉A,D

=
(
V̂ ′A ⊗ Û′D

)
|k, l〉A,D ,

(12)



Research Article Vol. 27, No. 23 / 11 November 2019 / Optics Express 34427

where we define the new unitary operators as Û′D |n〉 =
∑

µ u
(2)
n,µ |µ〉 and V̂ ′A |n〉 =

∑
ν v
(1)
n,ν |ν〉. In

the same manner, the other part of Eq. (11) is calculated as,∑
n′1,n

′
2

〈n′1, n
′
2 |A,D〈n

′
1, n
′
2 |B,C

(
V̂ (1)B ⊗ Û(2)C

)†
|i, j〉B,C = 〈i, j |A,D

(
V̂ ′A ⊗ Û′D

)†
. (13)

By substituting Eqs. (12) and (13) into Eq. (11), we obtain,

TrB,C
[
ρ̂ Π̂B,C

]
=

1
d2

∑
i,j,k,l

πi,j,k,l

(
Û(1)A V̂ ′A ⊗ V̂ (2)D Û′D

)
× |k, l〉〈i, j |A,D

(
Û(1)A V̂ ′A ⊗ V̂ (2)D Û′D

)†
,

= U
(
Π̂A,D

)T
U†,

(14)

where we define the POVM Π̂A,D and the local unitary operatorU as,

Π̂A,D =
∑
i,j,k,l

πi,j,k,l |i, j〉〈k, l|A,D, (15)

U ≡ Û(1)A V̂ ′A ⊗ V̂ (2)D Û′D. (16)

Note that this POVM Π̂A,D is the same as the original POVM Π̂B,C [Eq. (10)] except for the mode
subscripts. Finally we obtain the normalized density matrix after the measurement as,

ρ̂A,D =
TrB,C

[
ρ̂ Π̂B,C

]
Tr

[
ρ̂ Π̂B,C

] =
U

(
Π̂A,D

)T
U†

Tr
[
Π̂A,D

] . (17)

SinceU is the local unitary operator, any entanglement measure E(ρ̂A,D) that is invariant under
the local unitary operations is directly applicable to the normalized POVM Π̂B,C to quantify the
entanglement created by the measurement. We obtain the final expression as,

E(ρ̂A,D) = E
©«
U

(
Π̂A,D

)T
U†

Tr
[
Π̂A,D

] ª®®¬
= E

(
Π̂B,C

Tr
[
Π̂B,C

] )
= M(Π̂B,C).

(18)

Here M is the entanglement measure of the POVM as defined in Eq. (1). We relabelled the
POVM Π̂A,D as Π̂B,C, and note that E is invariant for the transpose.

Appendix B. Analytical solution of POVM with coherent state inputs

We will discuss how we can analytically calculate the POVM from the measurement probabilities
with various coherent state inputs. We aim at finding the minimum set of coherent states to
reconstruct the POVM. Later we will discuss how we actually choose the set of coherent states by
taking into account the experimental setup. We also note that the analytical solution will not be
used to reconstruct the POVM in the experiment, rather the optimization method will be used for
the best possible results under the experimental errors.
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We assume a two-mode and global-phase-insensitive detector where each mode has d-
dimensional Hilbert space. As explained in the Results, we actually have to reconstruct the
POVM with larger dimensions, and then truncate it to the d2 × d2 matrix representation. This is
because we use a two-mode coherent state as the input for reconstruction.

The general two-mode coherent state without global phase is expressed as
��α, βeiδ〉 (α, β, δ ∈

R), which is expanded in the photon number basis as Eq. (3). In order to use a coherent state for
the reconstruction of the POVM, we need to truncate the dimension of the coherent state so that it
matches the dimension of the POVM. However, we cannot truncate the two-mode coherent state
to d2-dimensions. This is because the coefficients of |m, n〉 (m+ n = 2(d − 1)) can be comparable
to the coefficient of |d − 1, d − 1〉. Instead we truncate the two-mode coherent state so that the
total photon number is limited to m + n ≤ N,��α, βeiδ〉N = exp

[
−
1
2

(
|α |2 + |β |2

)] N∑
m=0

m∑
n=0

αnβ(m−n)ei(m−n)δ√
n!(m − n)!

|n,m − n〉 . (19)

The subscript of the ket, N, denotes the truncated vector up to the total photon number of
N. N is chosen as N = 2(d − 1) so that the truncated Hilbert space (the dimension of
(N + 2)(N + 1)/2 = d(2d − 1)) contains the target Hilbert space (the dimension of d2). Note
that we will choose two amplitudes α and β so that N 〈α, βeiδ |α, βeiδ〉N ' 1. Henceforth we
will use the truncated coherent states only, and we will omit the subscript N, although we may
occasionally add N to emphasize the truncated vector.

The POVM for a global phase insensitive detector with up to the total photon number of N is
expressed as,

Π̂ =

N∑
n=0

n∑
k=0

n∑
l=0

πk,n−k,l,n−l |k, n − k〉〈l, n − l|. (20)

This POVM has (N + 1)(N + 2)(2N + 3)/6 unknowns in total. In our experiment, the dimension
is d = 2 and the total photon number should be N = 2, thus we will need at least 14 linearly
independent coherent states to reconstruct the POVM. As we have seen, each coherent state [Eq.
(19)] is associated with a triplet of parameters (α, β, δ). A minimum set SN of triplets can be
expressed as

SN =

{ (
α
(s)
v , β(s)v ,

2π
2s + 1

m
) ����s = {0, 1, . . . ,N},

0 ≤ v ≤ N − s, 0 ≤ m ≤ 2s, (v,m) ∈ Z
}
.

(21)

We will later discuss how to choose
(
α
(s)
v , β(s)v

)
.

Here we show how all the POVM elements can be analytically obtained with the set of coherent
states SN . Let us first calculate the probability p(α, βeiδ) for a two-mode coherent state input��α, βeiδ〉 with the POVM Π̂ in Eq. (20),

p(α, βeiδ) = 〈α, βeiδ |Π̂
��α, βeiδ〉 (22)

=

N∑
n=0

n∑
k=0

n∑
l=0

πk,n−k,l,n−l
e−α2−β2

αk+lβ2n−k−l√
k!(n − k)!l!(n − l)!

eiδ(k−l) (23)

=

N∑
∆=−N

N∑
n= |∆ |

min(n,n+∆)∑
k=max(0,∆)

πk,n−k,k−∆,n+∆−kCk,∆(α, β)eiδ∆, (24)

where ∆ = k − l, and Ck,∆(α, β) is the coefficient of πk,n−k,k−∆,n+∆−k except the phase eiδ∆. We
used the relationship

∑N
n=0

∑n
k=0

∑n
l=0 =

∑N
n=0

∑n
∆=−n

∑min(n,n+∆)
k=max(0,∆) =

∑N
∆=−N

∑N
n= |∆ |

∑min(n,n+∆)
k=max(0,∆).

Note that the number of POVM elements with ∆ in Eq. (24) is (N − |∆| + 1)(N − |∆| + 2)/2.



Research Article Vol. 27, No. 23 / 11 November 2019 / Optics Express 34429

By integrating this probability p(α, βeiδ) with the phase factor eitδ(t ∈ Z), we can sort out the
terms with ∆ = t as,

1
2π

∫ 2π

0
p(α, βeiδ)e−itδdδ =

N∑
n= |t |

min(n,n+t)∑
k=max(0,t)

πk,n−k,k−t,n+t−kCk,t(α, β). (25)

From the discrete set of δ = 2π
2s+1m ∈ SN , we can similarly sort out the terms with ∆ = t as,

1
(2s + 1)

2s∑
m=0

p(α, βei
2π
2s+1m)e−it

2π
2s+1m = A(s)t (α, β) + B

(s)
t (α, β), (26)

where

A(s)t (α, β) =
N∑

n= |t |

min(n,n+t)∑
k=max(0,t)

πk,n−k,k−t,n+t−kCk,t(α, β), (27)

B(s)t (α, β) =
∑

∆=t+(2s+1)u
(u,0, |∆ | ≤N)

N∑
n= |∆ |

min(n,n+∆)∑
k=max(0,∆)

πk,n−k,k−∆,n+∆−kCk,∆(α, β). (28)

A(s)t (α, β) is the desired term that is the same as Eq. (25), while B(s)t (α, β) is an additional term
due to the aliasing. Note that B(s)t (α, β) does not include any terms with the phase factor of
|∆| ≤ |t|, if |t| ≤ s.
We will then explain the sequential procedure to calculate the POVM elements using Eq. (26).

We assume that we have a set of probabilities p(α, βeiδ) for (α, β, δ) ∈ SN . First we use data for
the input coherent states of

{(
α
(N)
0 , β(N)0 , 2π

2N+1m
) ���0 ≤ m ≤ 2N,m ∈ Z

}
. Let s = t = N in Eqs.

(27) and (28), which give us,

A(N)N (α
(N)
0 , β(N)0 ) = πN,0,0,NCN,N(α

(N)
0 , β(N)0 ), (29)

B(N)N (α
(N)
0 , β(N)0 ) = 0. (30)

Since the left-hand side of Eq. (26) is computable from the given probabilities, we can calculate
the POVM element πN,0,0,N (or the POVM element for ∆ = N in the expression of Eq. (24)). Next,
we calculate A(N)N−1(α

(N)
0 , β(N)0 ) and B(N)N−1(α

(N)
0 , β(N)0 ) (i.e., s = N, t = N − 1) using the same data

set. In this case, A(N)N−1(α
(N)
0 , β(N)0 ) contains three POVM elements for ∆ = N − 1, i.e., πN−1,0,0,N−1,

πN−1,1,0,N , and πN,0,1,N−1, while B(N)N−1(α
(N)
0 , β(N)0 ) is still zero. Thus we have an equation with

three unknowns. To solve this equation, we use additional data for the input coherent states
of

{(
α
(N−1)
v , β(N−1)v , 2π

2N−1m
) ���v = {0, 1}, 0 ≤ m ≤ 2(N − 1),m ∈ Z

}
. Letting s = N − 1 and

t = N − 1 in Eq. (26) with these data, we obtain two additional equations for v = 0, 1. In
this case, A(N−1)N−1 (α

(N−1)
v , β(N−1)v ) contains the same three POVM elements for ∆ = N − 1, while

B(N−1)N−1 (α
(N−1)
v , β(N−1)v ) contains π0,N,N,0. Since π0,N,N,0 = π∗N,0,0,N is already derived, we can

solve the simultaneous equations regarding the POVM elements for ∆ = N − 1 as long as these
equations are linearly independent.

In the same manner, we can sequentially calculate the POVM elements for ∆ = N − l. When we
set t = N−l in Eq. (26) with the set of inputs

{(
α
(s)
v , β(s)v , 2π

2N−1m
) ���s = {N−l,N−l+1, . . . ,N}, 0 ≤

v ≤ N − s, 0 ≤ m ≤ 2s, {v,m} ∈ Z
}
, we will obtain (l + 1)(l + 2)/2 equations with the unknown

POVM elements for ∆ = N − l and the known POVM elements for |∆|>N − l. Since the number
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of the unknown POVM elements for ∆ = N − l is (N − |∆| + 1)(N − |∆| + 2)/2 = (l + 1)(l + 2)/2,
we can solve those simultaneous equations as long as the equations are linearly independent.

Thus, we have proven that the set of coherent states in Eq. (21) is enough to calculate all
the POVM elements. Since the degrees of freedom of the POVM is the same as the number of
input coherent states, the set of coherent states in Eq. (21) is a minimum set of input states. The
additional constraints are that we have to choose

(
α
(s)
v , β(s)v

)
so that the simultaneous equations

derived in the procedure are linearly independent, and the truncation is adequately achieved, i.e.,
N 〈α

(s)
v , β(s)v eiδ |α(s)v , β(s)v eiδ〉N ' 1.

Appendix C. Preparation of coherent state inputs

We will explain how to prepare coherent states in the experiment. The minimum number of
coherent states is 14 as explained before. We will actually prepare a larger number of coherent
states by taking into account experimental implementations.
Figure 2(c) shows the schematic to prepare a coherent state in the polarization two-modes,
|α, β〉 ≡ |α〉H |β〉V . The optical power of the horizontally polarized beam after the polarization
beam splitter (PBS1) is denoted as P, i.e., the state vector is expressed as

���√P, 0〉. The state after
the quarter wave plate (QWP2) and the half wave plate (HWP2) with the angles θQ and θH is,

|α, β〉 ≡ ÛHWP(θH)ÛQWP(θQ)
���√P, 0〉 , (31)

where ÛQWP and ÛHWP are unitary operators for QWP and HWP. We use the Jones matrix
method [36] to calculate this,

©«
α

β

ª®¬ = UHWP(θH)UQWP(θQ)
©«
√
P

0
ª®¬ , (32)

where

UHWP(θH) =
©«
cos 2θH sin 2θH
sin 2θH − cos 2θH

ª®¬ , (33)

UQWP(θQ) =
1
√
2

©«
1 − i cos 2θQ −i sin 2θQ
−i sin 2θQ 1 + i cos 2θQ

ª®¬ . (34)

Let us calculate the absolute values of the output amplitudes (α and β), and the relative phase
angle δ,

|α | =

√
P
2

(
1 + cos 2θQ cos 2(2θH − θQ)

)
, (35)

|β | =

√
P
2

(
1 − cos 2θQ cos 2(2θH − θQ)

)
, (36)

tan δ =
tan 2θQ

sin 2(2θH − θQ)
, (37)

where α = |α |eiδα , β = |β |eiδβ , and δ = δβ − δα. Thus, we can prepare an arbitrary two-mode
coherent state

��|α |, |β |eiδ〉, by adjusting the optical power P and the wave plate angles θQ and θH .
In order to reconstruct the detector POVMs with N = 2, we prepare 19 sets of coherent states

as listed in Table 1. These states are represented by the parameters in the set as shown in Eq.
(4). Note that N 〈

√
0.2, 0|

√
0.2, 0〉N = 0.999, and we decided to employ slightly larger number of

coherent states to simplify the rotating angles of two wave plates.
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Table 1. Input states preparation in the experiment. θQ and θH are the rotating angles of QWP and
HWP, respectively. The units of powers P, |α |2, and |β |2 are the photon numbers per wave packet.

P θQ[deg] θH[deg] |α | |β | δ[deg]

0.20 −22.5 −33.75 0.316 0.316 −135

0.20 −45 −22.5 0.316 0.316 −90

0.20 −22.5 11.25 0.316 0.316 −45

0.20 0 22.5 0.316 0.316 0

0.20 22.5 33.75 0.316 0.316 45

0.20 45 22.5 0.316 0.316 90

0.20 22.5 −11.25 0.316 0.316 135

0.20 0 −22.5 0.316 0.316 180

0.20 0 0 0.447 0 -

0.20 0 45 0 0.447 -

0.05 −30 −15 0.194 0.112 −90

0.05 0 15 0.194 0.112 0

0.05 30 15 0.194 0.112 90

0.05 0 −15 0.194 0.112 180

0.05 −30 30 0.112 0.194 −90

0.05 0 30 0.112 0.194 0

0.05 30 −30 0.112 0.194 90

0.05 0 −30 0.112 0.194 180

0 - - 0 0 -
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