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Abstract
Quantum machine learning (QML) is a young but rapidly growing field where quantum information meets machine learn-
ing. Here, we will introduce a new QML model generalising the classical concept of reinforcement learning to the quantum 
domain, i.e. quantum reinforcement learning (QRL). In particular, we apply this idea to the maze problem, where an agent 
has to learn the optimal set of actions in order to escape from a maze with the highest success probability. To perform the 
strategy optimisation, we consider a hybrid protocol where QRL is combined with classical deep neural networks. In par-
ticular, we find that the agent learns the optimal strategy in both the classical and quantum regimes, and we also investigate 
its behaviour in a noisy environment. It turns out that the quantum speedup does robustly allow the agent to exploit useful 
actions also at very short time scales, with key roles played by the quantum coherence and the external noise. This new 
framework has the high potential to be applied to perform different tasks (e.g. high transmission/processing rates and quantum 
error correction) in the new-generation noisy intermediate-scale quantum (NISQ) devices whose topology engineering is 
starting to become a new and crucial control knob for practical applications in real-world problems. This work is dedicated 
to the memory of Peter Wittek.
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1  Introduction

The broad field of machine learning (Bishop 2011; Cover 
and Thomas 1991; Hastie et  al. 2009) aims to develop 
computer algorithms that improve automatically through 
experience with lots of cross-disciplinary applications from 
domotics systems to autonomous cars, from face/voice rec-
ognition to medical diagnostics. Self-driving systems can 
learn from data, so as to identify distinctive patterns and 
make consequently decisions, with minimal human inter-
vention. Its three main paradigms are supervised learning, 
unsupervised learning and reinforcement learning (RL). 
The goal of a supervised learning algorithm is to use an 

output-labeled dataset {xi, yi}Ni=1 , to produce a model that, 
given a new input vector x, can predict its correct label y. 
Unsupervised learning, instead, uses an unlabelled dataset 
{xi}

N
i=1

 and aims to extract some useful properties (patterns) 
from the single datapoint or the overall data distribution 
of the dataset (e.g. clustering). In reinforcement learning 
(Sutton and Barto 2018), the learning process relies on the 
interaction between an agent and an environment and defines 
how the agent performs his actions based on past experi-
ences (episodes). In this process, one of the main problems 
is how to resolve the tradeoff between exploration of new 
actions and exploitation of learned experience. RL has been 
applied in many successful tasks, e.g. outperforming humans 
on Atari games (Mnih et al. 2015) and GO (Silver et al. 
2016) and recently it is becoming popular in the contexts 
of autonomous driving (Kiran et al. 2020) and neurosci-
ence (Botvinick et al. 2020).

In recent years, lots of efforts have been directed towards 
developing new algorithms combing machine learning 
and quantum information tools, i.e. in a new research field 
known as quantum machine learning (QML) (Schuld et al. 
2015; Wittek 2014; Adcock et al. 2015; Arunachalam and de 
Wolf 2017; Biamonte et al. 2017), mostly in the supervised 
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(Neven et al. 2008; Mott et al. 2017; Lloyd et al. 2020; 
Martina et al. 2022) and unsupervised domain (Otterbach 
et al. 2017; Winci et al. 2020; Hu et al. 2019), both to gain an 
advantage over classical machine learning algorithms and to 
control quantum systems more effectively. Some preliminary 
results on QRL have been reported in refs. Dong and Chen 
(2005); Paparo et al. (2014) and more recently for closed (i.e. 
following unitary evolution) quantum systems in ref. Dunjko 
et  al. (2016) where the authors have shown quadratic 
improvements in learning efficiency by means of a Grover-
type search in the space of the rewarding actions. Similarly, 
ref. Saggio et al. (2021) have shown how to get quantum 
speedups in reinforcement learning agents. The setting of 
an agent acting on an environment, however, has a natural 
analogue in the framework of open quantum systems (Breuer 
and Petruccione 2002; Caruso et al. 2014), where one can 
embed the entire RL framework into the quantum domain, 
and this has not been investigated in literature yet. Moreover, 
one of the authors of this manuscript, inspired by recent 
observations in biological energy transport phenomena 
(Caruso et al. 2009), has shown in ref. Caruso et al. (2016) 
that one can obtain a very remarkable improvement in 
finding a solution of a problem, given in terms of the exit of 
a complex maze, by playing with quantum effects and noise. 
This improvement was about five orders of magnitude with 
respect to the purely classical and quantum regimes for large 
maze topologies. In the same work, their results were also 
experimentally tested by means of an integrated waveguide 
array, probed by coherent light.

Motivated by these previous works, here we define the 
building blocks of RL in the quantum domain but in the 
framework of open (i.e. noisy) quantum systems, where 
coherent and noise effects can strongly cooperate together 
to achieve a given task. Then, we apply it to solve the quan-
tum maze problem that, being a very complicated one, can 
represent a crucial step towards other applications in very 
different problem-solving contexts.

2 � Reinforcement learning

In RL, the system consists of an agent that operates in an 
environment and gets information about it, with the ability to 
perform some actions in order to gain some advantage in the 
form of a reward. More formally, RL problems are defined 
by a 5-tuple (S,A,P

⋅
(⋅, ⋅),R

⋅
(⋅, ⋅), �) , where S is a finite set 

of states of the agent, A is a finite set of actions (alterna-
tively, As is the finite set of actions available from the state 
s), Pa(s, s

�) = Pr(st+1 = s� ∣ st = s, at = a) is the probability 
that action a in state s at time t will lead to the state s′ at time 
t + 1 , Ra(s, s

�) is the immediate reward (or expected immedi-
ate reward) received after transitioning from state s to state s′ , 
due to action a, and � ∈ [0, 1] is the discount factor balancing 

the relative importance of present and future rewards. In this 
setting, one can introduce different types of problems, based 
on the information one has at disposal. In multi-armed ban-
dit models, the agent has to maximise the cumulative reward 
obtained by a sequence of independent actions, each of which 
giving a stochastic immediate reward. In this case, the state of 
the system describes the uncertainty of the expected immediate 
reward for each action. In contextual multi-armed bandits, the 
agent faces the same set of actions but in multiple scenarios, 
such that the most profitable action is scenario-dependent. In 
a Markov decision process (MDP), the agent has information 
on the state and the actions have an effect on the state itself. 
Finally, in partially observable MDPs, the state s is partially 
observable or unknown.

The goal of the agent is to learn a policy ( � ) that is a rule 
according to which an action is selected. In its most general 
formulation, the choice of the action at time t can depend 
on the whole history of agent-environment interactions 
up to t, and is defined as a random variable over the set of 
available actions if such choice is stochastic. A policy is called 
Markovian if the distribution depends only on the state at time 
t, with �t(a|s) denoting the probability to choose the action a 
from such state s, and if a policy does not change over time 
it is referred as stationary (Ghavamzadeh et al. 2015). Then, 
the agent aims to learn the policy that maximises the expected 
cumulative reward that is represented by the so-called value 
function. Given a state s, the value function is defined as 
V�(s) = �[

∑∞

t=0
� tR(Zt)�Z0 = (s,�(.�s))] , where Zt is a random 

variable over state-action pairs. The policy � giving the 
optimal value function V∗(s) = sup� V

�(s) is the RL objective. 
It is known  (Sutton and Barto 2018; Ghavamzadeh et al. 
2015) that the optimal value function V∗(s) has to satisfy the 
Bellman equation, i.e. V�(s) = R�(s) + � ∫

S
P�(s�|s)V�(s�)ds� . 

In deep RL, the policy is learned by a deep neural network 
whose objective function is the Bellman equation itself. The 
network starts by randomly exploring the space of possible 
actions and iteratively reinforcing its policy through the 
Bellman equation given the reward obtained after each 
action. A popular approach to transition from a purely random 
exploration to a conclusive reinforced policy can be achieved 
via an �-greedy policy, which chooses a random action with 
probability 0 < 𝜀 ≪ 1 and the provisional optimal one with 
probability 1 − � . Furthermore, a smooth transition can be 
obtained with a time-dependent slow decay of the parameter 
� . A pictorial view of the iterative process between the agent 
and the environment can be found in Fig. 1.

3 � Quantum maze

Here we transfer the RL concepts into the quantum domain 
where both the environment and the reward process fol-
low the laws of quantum mechanics and are affected by 
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both coherent and incoherent mechanisms. We consider, 
for simplicity, a quantum walker described by a qubit that 
is transmitted over a quantum network representing the 
RL environment. The RL state is the quantum state over 
the network, represented by the so-called density opera-
tor � . The RL actions are variations of the environment, 
e.g. its network topology, that will affect the system state 
through a noisy quantum dynamics. The reward process is 
obtained from the evolution of the quantum network and 
hence associated to some probability function to maxim-
ise. Following the results in ref. Caruso et al. (2016) and 
just to test this framework on a specific model, we consider 
a perfect maze, i.e. a maze where there is a single path 
connecting the entrance with the exit port. The network 
dynamics is described in terms of a stochastic quantum 
walk model (Whitfield et al. 2010; Caruso 2014), whose 
main advantage here is that, within the same model, it 
allows to consider a purely coherent dynamics (quantum 
walk), a purely incoherent dynamics (classical random 
walk), and also the hybrid regime where both coherent 
and incoherent mechanisms interplay or compete with 
each other. Although it is very challenging to make a fair 
comparison between QRL and RL as applied to the same 
task and it is out of the scope of this paper, the model we 
consider here allows us to have the non-trivial chance to 
analyse the performances of the classical and quantum RL 
models respectively but in terms of the same resources and 
degrees of freedom. Very recently we have also exploited 
this model to propose a new transport-based (neural net-
work-inspired) protocol for quantum state discrimination 
(Dalla Pozza and Caruso 2020).

According to this stochastic quantum walk model, the 
time evolution t of the walker state � is governed by the 
following Lindblad equation (Lindblad 1976; Whitfield 
et al. 2010; Caruso 2014):

where LQW (�) = −i[A, �] describes the coherent hoping 
mechanisms, LCRW (�) =

∑
i,j Lij�L

†

ij
−

1

2
{L†

ij
Lij, �} with 

Lij = (Aij∕dj)�i⟩⟨j� describes the incoherent hopping ones, 
while Lexit(�) = 2�n + 1⟩⟨n���n⟩⟨n + 1� − {�n⟩⟨n�, �} is asso-
ciated to the irreversible transfer from the maze (via the node 
n) to the exit (i.e., a sink in the node n + 1 ). Here the maze 
topology is associated to the so-called adjacency matrix of 
the graph A, whose elements Aij are 1 if there is a link 
between the node i and j, and 0 otherwise. Besides, dj is the 
number of links attached to the node j, while �i⟩ is the ele-
ment of the basis vectors (in the Hilbert space) correspond-
ing to the node i. The parameter p describes how much inco-
herent the walker evolution is. In particular, when p = 1 one 
recovers the model of a classical random walk, when p = 0 
one faces with a quantum walk, while when 0 < p < 1 the 
walker hops via both incoherent and coherent mechanisms 
(stochastic quantum walker). Let us point out that the com-
plex matrix �ij ≡ ⟨i���j⟩ contains the node (real) populations 
along the diagonal, and the coherence terms in the off-diag-
onal (complex) elements. More in general, in order to have 
a physical state, the operator � has to be positive semi-defi-
nite (to have meaningful occupation probabilities) and with 
trace one (for normalised probabilities). Hence, in this basis, 
only for a classical state �ij is a fully diagonal matrix. Then, 
t h e  e s c a p i n g  p r o b a b i l i t y  i s  m e a s u r e d  a s 
pexit(t) = 2 ∫ t

0
�nn(t

�)dt� . Ideally, we desire to have pexit = 1 
in the shortest time interval, meaning that with probability 
1 the walker has left the maze.

In the RL framework, �(t) is the state st evolving in time, 
the environment is the maze, and the objective function 
is the probability pexit that the walker has exited from the 
maze in a given amount of time (to be maximised), or, in an 
equivalent formulation of the problem, the amount of time 
required to exit the maze (to be minimised). In this paper, 
we consider the former objective function. The actions are 
obtained by changing the environment, that is, by varying 
the maze adjacency matrix. More specifically, we consider 
three possible actions a performed at given time instants 
during the walker evolution: (i) building a new wall, i.e. 
Aij is changed from 1 to 0 (removing a link); (ii) breaking 
through an existing wall, i.e. Aij is changed from 0 to 1 (add-
ing a new link); (iii) doing nothing (null action) and letting 
the environment evolve with the current adjacency matrix. 
The action (i) may allow the walker to waste time in dead-
end paths, while the action (ii) may create shortcuts in the 
maze — see Fig. 2. Notice that the available actions a are 
indexed with the link to modify, so that the action space is 
discrete and finite. In the following, we set the total number 
of actions to be performed during the transport dynamics. 
In principle, one could add a penalty (negative term in the 

(1)
d�

dt
= (1 − p) LQW (�) + p LCRW (�) + Lexit(�)

Fig. 1   Deep reinforcement learning scheme. A deep neural network 
learns the policy � that the agent uses to perform an action on the 
environment. A reward and the information about the new state of the 
system are given back to the agent that improves and learns its policy 
accordingly
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reward) in order to let the learning minimise the total num-
ber of actions (which might be energy consuming physical 
processes). The immediate reward Ra(s, s

�) is the incremen-
tal probability that the walker has left the maze in the time 
interval Δt following the action a changing the state from 
�(t) to �(t + Δt) . This is an MDP setting. The optimal pol-
icy � gives the optimal actions maximising the cumulative 
escaping probability. Besides, one could also optimise the 
noise parameter p but we have decided to keep it fixed and 
run the learning for each value of p in the range [0, 1].

This approach is slightly different from the scenario 
pictured in the traditional maze problem (classical RL). A 
classical educational example is provided, for instance, by 
a mouse (the agent) whose goal is to find the shortest route 
from some initial cell to a target cheese cell in a maze (the 
environment). The agent needs to experiment and exploit 
past experiences in order to achieve its goal, and only after 
lots of trials and errors it will solve the maze problem. In 
particular, it has to find the optimal sequence of states in 
which the accumulated sum of rewards is maximal, for 
instance considering a negative reward (penalty) for each 
move on free cells in the maze. This is indeed an MDP set-
ting, where the possible actions are the agent moves (left, 
right, up, down). In our case, we face instead with a prob-
ability distribution to find the walker on the maze positions, 
while in the classical setting the corresponding state would 
be a diagonal matrix �ii where only one element is equal 
to 1 and the others are vanishing. Our setup introduces an 
increased complexity with respect the classical case, in both 
the definition of the state and in the number of available 
actions. In addition, a quantum walker can move in parallel 
along different directions (quantum parallelism), as due to 

the quantum superposition principle in quantum physics, and 
interfere constructively or destructively on all maze posi-
tions, i.e. the quantum walker behaves as an electromagnetic 
or mechanical wave travelling through a maze-like structure 
(wave-particle duality). For these reasons, it is more natural 
to consider topology modifications (i.e. in the hopping rates 
described by Aij ) as possible actions. However, let us point 
out that changing the hopping rate is qualitatively similar to 
the process of forcing the walker to move more in one or in 
the other direction, hence mimicking the continuous-version 
of the discrete moves for the mouse in the classical scenario.

4 � Results

Within the setting described above, we set a time limit T 
for the overall evolution of the system and define the time 
instants tk = k� , with � = Δt = T∕N  and k = 0,…N − 1 , 
when the RL actions can be performed. The quantum walker 
evolves according to Eq. 1 in the time interval between tk 
and tk+1 . We then implement deep reinforcement learning 
with �-greedy algorithm for the policy improvement, and 
run it with N = 8 actions and with 1000 training epochs (see 
Methods for more technical details). At each time instant tk 
the agent can choose to modify whatever link in the maze, 
albeit we would expect its actions to be localised around 
the places where it has the chance to further increase the 
escaping probability. The �-greedy algorithm implies that 
the agent picks either the action suggested by the policy 
with probability 1 − � or a random action with probability � . 
This method increases the chances of the policy to explore 
different strategies searching for the best one instead of just 
reinforcing a sub-optimal solution. The value of � is slowly 
decreased during training so that, at the end, the agent is just 
applying the policy without much further exploration. This 
optimisation is repeated for different values of p and T in 
order to investigate their role in the learning process.

As shown in Fig. 3, there is a clear RL improvement for 
any value of p especially for large T (i.e. also large � ), while 
for small T it occurs mainly in the quantum regime (i.e. p 
going to 0) when the walker exploits coherent (and fast) hop-
ping mechanisms. This is due to the fact that the classical 
random walker (without RL) moves very slowly and remains 
close to the starting point for small T, as reported in ref. 
Caruso et al. (2016). Repeating this experiment for 30 ran-
dom 6 × 6 perfect mazes, we find a very similar behaviour — 
see also Fig. 6 in Methods where interestingly a dip in the 
cumulative reward enhancement is shown at around p = 0.1 
where the interplay between quantum coherence and noise 
allows to optimise the escaping probability without acting 
on the maze (Caruso 2014). There it was very remarkable 
to observe that a small amount of noise allows the walker 
to both keep its quantumness (i.e. moving in parallel over 

Fig. 2   Pictorial view of a maze where a classical/quantum walker 
can enter the maze from a single input port and escape through a sin-
gle output port. In order to increase the escaping probability within 
a certain time, at given time instants, the RL agent can modify the 
environment (maze topology) breaking through existing walls and/or 
building new walls while the walker moves around to find the exit as 
quick as possible
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the entire maze) and learn the shortest path to the exit from 
the maze.

Figure  4 shows an example of cumulative rewards 
obtained from the training of a network while the agent 
explores the space of the possible actions. Initially some ran-
dom actions are performed, and soon the agent finds some 
positive reinforcement and learns to consistently apply better 
actions outperforming the case with no actions.

The proposed way of learning the best actions also comes 
with an intrinsic robustness to stochastic noise. Indeed this 

is a crucial property of RL-based approaches. In our case, 
we can suppose that we do not have perfect control on the 
system and there might be perturbations, for example in 
the timing at which the actions are effectively performed. 
These kinds of perturbations are in general detrimental for 
hard-coded optimisation algorithms, and we want to analyse 
how our QRL approach performs in this regard. To check 
this, we first train the agent in an environment with fixed 
� and p. Afterwards, we evaluate the performance of the 
trained agent in an environment where the time � at which 
the actions are performed becomes stochastic (noisy). This 
additional noise in the time is controlled by a parameter 
0 ≤ � ≤ 1 while the total time of the actions is kept fixed. In 
this setting, we observe a remarkable robustness of our agent 
that is capable of great generalisation and keep the cumula-
tive reward almost constant despite of the added stochastic-
ity. Indeed, in Fig. 5, we plot the average reward obtained by 
the agent in this stochastic environment over 100 different 
realisations of the noise. We can see that as we increase the 
parameter � our agent, on average, keeps the ability to find 
the correct actions in order to make the reward consistent 
even in a stochastic environment, even though it has not been 
retrained in the noisy setting. However, while the average 
reward remains stable, the difference between the minimum 
and maximum reward increases significantly as � increases.

The other tested scenario is the one in which, instead 
of taking the actions equally spaced in the total evolution 
time, we concentrate them all at the beginning or at the end 
of the evolution. This gives our agent a different environ-
ment at which it adapts once again implementing different 
strategies. Indeed, we find that our training method is appli-
cable with success also in this more general scenario thus 

Fig. 3   Cumulative reward as a function of p and � , for a given 6 × 6 
perfect maze and N = 8 actions, equally spaced in time by the amount 
� . The time unit is given in terms of the inverse of the sink rate set to 
1. The dotted grid above represents the performance of the quantum 
walker after the training, while the coloured solid surface below is the 
baseline on the same maze with no actions performed by the agent 
(only free evolution). Repeating the training on over 30 random 6 × 6 
mazes and averaging their performances for each (p, �) , we qualita-
tively obtain the same trend

Fig. 4   Training curves for an agent performing RL actions for 
p = 0.4, � = 28 , and N = 8 actions on a 6 × 6 perfect maze. The 
curves show the cumulative rewards from single episodes (light blue), 
ten-episode window average (dark blue) and for the target network 
(orange) — see RL optimisation in Methods. The two horizontal lines 
are the (constant) cumulative reward in the case of no RL actions 
(magenta) and for the final trained policy (green)

Fig. 5   Cumulative reward of an agent trained at � = 14 and p = 0.4 
and deployed in a stochastic environment controlled by the parame-
ter � . The solid line is the average reward obtained by the agent over 
100 realisations of the noise, the shaded area represents the minimum 
and the maximum achieved reward and the dashed orange line is the 
baseline of the walker with no actions performed. While the average 
performance of the agent remains stable, the variance in the outcomes 
increases greatly as � increases
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concluding our remarks on the robustness of the proposed 
QRL implementation.

A detailed discussion of the robustness analysis and 
all the aforementioned experiments can be found in the 
Appendix.

5 � Methods

5.1 � Quantum maze simulation

To simulate the stochastic quantum walk on a maze, we have 
used the popular QuTiP package (Johansson et al. 2012) for 
Python. In order to account for the actions performed by the 
agent at time instants tk = k� modifying the network topol-
ogy and to evaluate the reward signal, we have wrapped the 
QuTiP simulator in a Gym environment (Brockman et al. 
2016). Gym is a python package that has been created by 
OpenAI specifically to tackle and standardise reinforcement 
learning problems. In this way, we can apply any RL algo-
rithms on our quantum maze environment. The initial maze 
could be randomly generated or loaded from a fixed saved 
adjacency matrix in order to account for both the reproduc-
ibility of single experiments and the averaging over different 
configurations.

5.2 � RL optimisation

We have used a feed-forward neural network to learn the pol-
icy of our agent, following the Deep Q Learning approach 
(Stooke and Abbeel 2019), realised with the PyTorch pack-
age for python (Paszke et al. 2019). In this approach, at each 
iteration of the training loop defining a training epoch, a new 
training episode is evaluated by numerically solving Eq. 1 
for the time evolution and employing an �-greedy policy for 
the action selection. The new training episode is recorded 
in a fixed-dimension pool of recent episodes called replay 
memory, from which, after every new addition, a random 
batch of episodes is selected to train the policy neural net-
work. The � parameter is reduced at each epoch, in order to 
reduce the exploration of new action sequences and increase 
the exploitation of the good ones proposed by the policy 
neural network. Periodically, the policy neural network is 
copied in a target neural network, i.e. a trick used to reduce 
the instabilities in the training of the policy neural network. 
Figure 4 shows the reward of the training episodes, their 
ten-episode window average, the reward provided by target 
network, alongside the free evolution (no RL actions), and 
final reward (constant lines) provided by the trained target 
network.

Despite the relative simple architecture, we have found the 
training to be quite sensitive to the choice of learning hyper-
parameters, such as the batch size of the training episodes per 

epoch, the replay memory capacity, the rate of target network 
update and the decay rate of � in the �-greedy policy. In par-
ticular, in Fig. 3 for each (p, �) , we run multiple independ-
ent hyper-parameter optimisations and training, employing 
the libraries Hyperopt (Bergstra et al 2013) and Tune (Liaw 
et al. 2018). Due to the small size of the networks, we were 
able to launch multiple instances of our training procedure 
using a single Quadro K6000 GPU. Figure 6 shows the mean 
cumulative reward improvement between the no-action strat-
egy (only free evolution) and the trained strategy over 30 
random perfect mazes (size 6 × 6 ) with N = 8 actions.

6 � Discussion

To summarise, here we have introduced a new QML model 
bringing the classical concept of reinforcement learning into 
the quantum domain but also in presence of external noise. 
An agent operating in an environment does experiment and 
exploit past experiences in order to find an optimal sequence 
of actions (following the optimal policy) to perform a given 
task (maximising a reward function). In particular, this was 
applied to the maze problem where the agent desires to opti-
mise the escaping probability in a given time interval. The 
dynamics on the maze was described in terms of the stochas-
tic quantum walk model, including exactly also the purely 
classical and purely quantum regimes. This has allowed to 
make a fair comparison between transport-based RL and 
QRL models exploiting the same resources. We have found 
that the agent always learns a strategy that allows a quicker 
escape from the maze, but in the quantum case the walker 
is faster and can exploit useful actions also at very short 

Fig. 6   Cumulative reward improvement over the no RL action (free 
evolution) dynamics as a function of p and � , averaged over 30 ran-
dom perfect mazes ( 6 × 6 size) and N = 8 (equally spaced in time) 
actions
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times. Instead, in presence of a small amount of noise, the 
transport dynamics is already almost optimal and RL shows 
a smaller enhancement, hence further supporting the key 
role of noise in transport dynamics. In other words, some 
decoherence effectively reproduces a sort of RL optimal 
strategy in enhancing the transmission capability of the net-
work. Moreover, the presence of more quantumness in our 
QRL protocol leads to have more robustness in the optimal 
reward with respect to the exact timing of the actions per-
formed by the agent.

Finally, let us discuss how to possibly implement the 
RL actions in the maze problem from the physics point of 
view. In ref. Caruso (2014), one of us has shown that one 
can design a sort of noise mask that leads to a transport 
behaviour as if one had modified the underlying topology. 
For instance, dephasing noise can open shortcuts between 
non-resonant nodes, and Zeno-like effects can suppress the 
transport over a given link, hence mimicking the two types 
of RL actions discussed in this paper. As future outlooks, 
one could test these theoretical predictions via atomic or 
photonic experimental setups or even on the new-generation 
NISQ devices whose current technologies today allow to 
engineer complex topologies and modify them in the same 
time scale of the quantum dynamics while also exploiting 
some beneficial effects of the environmental noise that can-
not be suppressed.

Appendix 1. Generalisation of the neural 
network training

After training the learning algorithm, we have verified its 
generalisation properties on unseeing parameter pairs (p, �) . 
Namely, we have applied the neural network N  trained for 
(p�, ��) on all the (p, �) grid. An example of the cumula-
tive reward obtained from this comparison is depicted in 
Fig. 7, where we represent with a coloured surface the per-
formance of the free evolution, and in a black mesh sur-
face the cumulative reward of the neural network trained 
for p� = 0, �� = 14 . The figure, to be compared with Fig. 3 
of the main text, is qualitatively similar, meaning that a sin-
gle neural network is able to generalise the behaviour of 
other networks trained for each (p, �) . Note that the opti-
mal sequences proposed by N  are indeed different depend-
ing on (p, �) (though they may share similar patterns), and 
that in general the optimal sequences of actions are optimal 
only locally. We have tested this latter hypothesis running 
all the optimal sequences proposed by all the trained neural 
networks for all grid points (p, �) . The cumulative reward 
obtained is plotted in Fig. 8, where we can observe that a 
small number of optimal sequences cover all the grids (the 
same sequence is related to the same colour of the marker). 
Despite not being an exhaustive check for all the possible 

sequences, this gives evidence that a sequence is optimal 
only locally.

Appendix 2. Robustness

To further test the robustness of our trained agent, we 
checked its performances in a stochastic environment where 
the time interval between the actions can fluctuate. The agent 
is thus forced to adapt its strategy to the new environment 
and, as we can observe, in Fig. 9 it does this surprisingly 

Fig. 7   Cumulative reward of a neural network N  trained for 
p� = 0, �� = 14 and then tested on all the (p, �) grid (black dotted 
mesh). The solid coloured surface gives the cumulative reward of the 
free evolution

Fig. 8   Cumulative reward obtained maximising for each (p, �) the 
cumulative reward from all the optimal sequences suggested by all 
the trained neural networks. Of all the sequences, four are sufficient to 
give the maximum cumulative reward, and are identified by the col-
oured markers (grey, magenta, green and orange)
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well. The agents have been first trained in a noiseless envi-
ronment with � = 14 and p ∈ [0, 1] . The additional noise 
in the time is controlled by a parameter 0 ≤ � ≤ 1 while the 
total time of the actions is kept fixed. In detail, for a set of 
N = 8 actions, we sample 8 random numbers in the interval 
[−��, ��] obtaining a noise vector 𝜂̄ , which is then averaged 
to zero in order to keep the total time of the walker constant. 
This vector gives the variation to apply to each time instant tk 
where the actions are performed. In Fig. 9, we plot the aver-
age reward obtained by the agent in this noisy environment 
over 100 different realisations of the noise. We can see that 
as we increase the noise parameter � our agent keeps the 

ability to find the correct actions in order to make the reward 
consistent even in a noisy environment, even though it has 
not been retrained in the noisy setting. This analysis on the 
robustness to noise in time further proves the capability of 
our approach to generalise well to different environments.

Appendix 3. RL actions timing

Finally, we analyse the scenario when one introduces a 
transient time before or after the set of equally time-spaced 
actions. Namely, we consider a total time evolution of 
T = 8 × 28 = 224 , and split it in T = T1 + T2 + T3 where T1 
is a transient time with free evolution before applying the 
actions, T2 = N × � is the time interval applying the actions 
spaced by � , and T3 is a transient time of free evolution after 
the actions. The results in Fig. 10 show that our training 
method is applicable also in this more general scenario, and 
we can also observe the role of the time instant to perform 
the action. In fact, accumulating the actions at the beginning 
(Fig. 10b) and at the end (Fig. 10a) of the dynamics seems 
to lead to a suboptimal strategy, where the improvements are 
more difficult to occur. Of course, the extreme case of per-
forming the actions at the very end shows no improvement 
with respect to the no-action strategy (Fig. 10a for large T1 ). 
We also find that for low values p (meaning more quantum-
ness of the walker) the time at which we do the actions is 
clearly less important than for large values of p, where a dif-
ferent timing of the actions can result in a drastic reduction 
of the improvements over the baseline. This result proves 
the robustness of the quantum regime with respect to the 
classical one.

Fig. 9   Cumulative reward of an agent trained at � = 14 and deployed 
in a noisy environment where the noise is controlled by the parameter 
� . The reported reward is the average performance of the agent over 
100 different realisations of the noise

Fig. 10   Cumulative reward for a fixed total time evolution 
T = T

1
+ T

2
+ T

3
= 8 × 28 = 224 , with T

1
 the free evolution interval 

before the application of the actions, T
2
= 8 × � the interval where 

the actions spaced by τ are performed (τ  is evaluated given the val-
ues T, T1, T3), and T

3
 the free evolution interval after the actions. 

The time unit is given in terms of the inverse of the sink rate set to 1. 

The cumulative reward for the no-actions strategy (only free evolu-
tion in T) is drawn in a red solid line. a Cumulative reward as a func-
tion of p and T

1
 with T

3
= 0 . Notice that in the limit where T

1
= 224 

the actions are packed at the end of the time evolution where they 
become irrelevant, thus recovering the no-action case. b Cumulative 
reward as a function of p and T

3
 with T

1
= 0
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