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Abstract

Born about a century ago, Quantum Mechanics has revolutionized the description

and the interpretation of Physics at sub-microscopic level. In the last decades,

due to the influence of mathematical and engineering research fields, Quantum

Mechanics has given birth to related research areas like Quantum Computation,

Quantum Information and Quantum Communication.

With the discovery of the laser, and later the development of fiber optics

and satellite networks, Quantum Communication and Quantum Optics seems

to have a natural field of application in Communication Systems. Despite this,

the interest in this technology and studies for communication purpose has been

overshadowed by the great results in communication networks achieved in the last

decades with classical paradigms. However, due to the increasing demand of com-

munication data rate, system designers are now looking at Quantum Mechanics

for new and more performanting solutions in communication purposes.

Early theoretical studies on Quantum Discrimination Theory and Quantum

Information predict better performance for Communication Systems that take

advantage of the quantum laws.

In addition, Quantum Mechanics provides the deepest description of the phys-

ical phenomena, and there are scenarios where a quantum model fits best, as in

in deep space communications, where the received signal is really weak, or in

a satellite networks, where we are interested in strongly reducing the power of

transmitted signals, possibly without sacrificing performance significantly.

However, if on one side Quantum Communication Theory promises great gains

in the performance of communication systems, on the other hand it fails to de-

scribe how to implement physical devices that reach these ultimate limits. So

far, only a few architectures achieving these performances are known, and only

for simple modulation formats. We are interested in the scenario of optical com-

munications, where the message transmitted is encoded in a sequence of coherent

states. Transmitter devices for coherent modulation are well known and consist in

laser pulse generators. Instead, receiver implementations working at the quantum
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limit performance limit are yet to be found.

In this Thesis I deal with different topics in the quantum transmission scenario.

First, I review existing classical (suboptimal) and quantum (suboptimal and

optimal) receiver schemes for the binary coherent modulation. I present a new

formulation of the optimal scheme known as Dolinar Receiver with the multiple

copies problem, focusing on the information gained during the measurement.

Second, I analyze the binary communication in a noisy environment, studying

the error probability and the capacity of the binary channel induced. Given the

description of the quantum channel, I optimize both the transmitted quantum

states and the measurement operators employed in the communication.

Third, I consider the Pulse Position Modulation, that is particularly suitable

for space and satellite communication due to its simplicity of implementation and

high capacity. I review some known suboptimal receivers, and I propose a receiver

scheme which approaches the limit performance predicted with quantum theory

outperforming the existing schemes.

To sum up the results of this Thesis, in order to approach the limit perfor-

mance predicted by Quantum Mechanics, an optimization is always necessary to

exceed the classical effects and trigger the quantum phenomena. In particular,

the information gained during the measurement plays an important role, for ex-

ample in the definition of adaptive receivers. In this Thesis both these aspects

have been deeply investigated.
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Sommario

Formalizzata più di un secolo fa, la Meccanica Quantistica ha rivoluzionato

la descrizione e l’interpretazione della Fisica a livello microscopico. Negli ul-

timi decenni, grazie all’influenza di studi affini nei campi della matematica e

dell’ingegneria, la Meccanica Quantistica ha portato allo sviluppo di aree di

ricerca quali la Computazione Quantistica, la teoria dell’Informazione Quantistica

e le Comunicazioni Quantistiche.

Con l’invenzione del laser, e i successivi sviluppi delle fibre ottiche e delle reti

satellitari, la comunicazione quantistica e l’ottica quantistica hanno un naturale

campo di applicazione nello studo nei sistemi di comunicazione. Nonostante ciò,

l’interesse in questa tecnologia e gli studi quantistici sulle telecomunicazioni sono

stati messi in ombra dai risultati nelle reti di comunicazione ottenuti negli ultimi

decenni con paradigmi classici. Solo recentemente, a causa dell’aumento della

richiesta di rate trasmissivo, i progettisti di sistemi di comunicazione guardano

alla meccanica quantistica in cerca di soluzioni nuove e più efficienti.

I primi studi teorici nella teoria quantistica della discriminazione e dell’informazione

prevedono un notevole vantaggio nelle prestazioni se i sistemi di comunicazione

sono progettati secondo le leggi della meccanica quantistica.

Inoltre, la meccanica quantistica fornisce la più profonda descrizione dei fenomeni

quantistici, e in alcuni scenario tale descrizione è più appropriata, come nel caso di

comunicazioni dallo spazio profondo, dove il segnale ricevuto è estremamente de-

bole, o nelle reti satellitari, dove siamo interessati a ridurre la potenza trasmessa

con il segnale, senza sacrificare significativamente le prestazioni.

Se da un lato le comunicazioni quantistiche promettono grandi guadagni in

termini di performance, dall’altro lato non spiegano esplicitamente come costru-

ire dispositivi che raggiungono questi limiti. Finora, solo pochi schemi di comu-

nicazione che raggiungono questo limite sono conosciuti, e solo per formati di

modulazione semplici. Lo scenario di nostro interesse è quello delle trasmissioni

ottiche, dove un messaggio trasmesso viene codificato in una sequenza di stati

coerenti. Dispositivi di trasmissione per la modulazione coerente sono noti (gen-
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eratori laser), mentre ricevitori che lavorano nel regime quantistico sono ancora

da sviluppare.

In questo lavoro di Tesi sviluppo diversi temi nello scenario delle comunicazioni

quantistiche.

Inizialmente, riassumo gli schemi di ricezione classici (subottimi) e quantistici

(ottimi e subottimi) per la modulazione binaria coerente. Successivamente pre-

sento una riformulazione dello schema ottimo noto come il ricevitore di Dolinar

come un problema di copie multiple, focalizzandomi sull’informazione guadagnata

durante l’operazione di misura.

Successivamente, analizzo la comunicazione binaria in un ambiente rumoroso,

studiando la probabilità di errore e la capacità del canale binario che si possono

ottenere. Data una descrizione quantistica del canale, ottimizzo rispetto sia gli

stati trasmessi che gli operatori di misura impiegati nella comunicazione.

In seguito considero una modulazione più complessa, la Pulse Position Modu-

lation, particolarmente adatta per le comunicazioni dallo spazio e satellitari, gra-

zie alla semplicità di implementazione e all’alta capacità. In primo luogo rivedo

alcuni ricevitori subottimi, e successivamente propongo uno schema di ricezione

che approccia le prestazioni limite predette con la teoria quantistica, superando

gli schemi esistenti in letteratura.

Riassumendo i risultati della Tesi, per approcciare le prestazioni ottime pre-

dette dalla meccanica quantistica un procedimento di ottimizzazione è sempre

necessario per superare gli effetti classici e innescare i fenomeni quantistici. In

particolare, l’informazione guadagnata durante il procedimento di misura gioca

un ruolo fondamentale, ad esempio nella definizione di ricevitori adattativi. In

questo lavoro di Tesi entrambi questi aspetti sono stati investigati a fondo.
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Chapter 1

Introduction

The extraordinary progress we have witnessed in the last decades in mobile com-

munications, wireless technologies and internet networking is just the last fraction

of a longer and increasing interest in a broader area of studies gathered together

under the name of Information and Communication Technology.

These research fields are founded on the studies of electromagnetic field theory

in the second half of the XIXth century, trying to give a description of the physical

phenomena involved in the propagation of electromagnetic waves. More than

fifty years later, the invention of the laser and the deployment of cable, fiber, and

free space networks first, the advance in coding and decoding techniques later,

the development of the internet infrastructure and protocols up to the current

diffusion of mobile technology have provided new scenarios for the communication

studies, giving birth to many related research areas such as signal processing,

information, coding and system theory.

In the search for new and better-performing solutions to the challenges im-

posed by the communication scenarios, the scientific community is now looking for

answers in research fields outside the classical physic, and Quantum Mechanics

seems a promising field to be investigated in order to find new and such solutions.

Formalized and experimentally tested in the first decades of the previous cen-

tury, Quantum Mechanics has established itself as the branch of Physics that pro-

vides the deepest description of the phenomena at sub-microscopic level. Later, in

11



12 CHAPTER 1. INTRODUCTION

conjunction with other research fields in mathematics and engineering, Quantum

Mechanics has given birth to related research areas such as Quantum Computa-

tion, Quantum Information and Quantum Communication.

The initial investigations on the use of Quantum Mechanics for communica-

tion purposes have pointed out the possibility to achieve better performances if

the communication system is designed exploiting quantum laws. Despite this,

the interest in this studies and technology for communication purpose was over-

shadowed by the great results in communication networks achieved in the last

decades with classical paradigms.

However, quantum effects are now being taken into account more and more

often in the electronic hardware design and in deep space and satellite communi-

cation scenarios, so that communication engineers will soon have to face, but also

to take advantage, of the laws of Quantum Physics. In my opinion, we can expect

for the next decades a great technological development due to Quantum Mechan-

ics as it has been in the previous decades for the study on the Electromagnetic

Field Theory formulated more than a century ago.

In the next Sections I explain the need for a quantum approach to the design of

communication systems, explaining some motivation for the shift from a classical

to a quantum paradigm.

1.1 Main differences between the classical and quan-

tum communication design paradigm

Quantum Physics provides the deepest description of the physical phenomena

involved in Communication Systems. With the discovery of the laser, and later

the development of fiber optics and satellite networks, Quantum Communication

and Quantum Optics seem to have a natural field of application for transmission,

propagation and detection tasks of the communication systems.

However, the deeper description provided by Quantum Physics introduces
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profound differences with respect to the classical paradigm [1], which at first can

appear as additional complications, but at the same time can be exploited at our

own advantage.

Firstly, a measurement of a quantum system can be ambiguous even if there is

no noise introduced by the environment. In the language of communication, the

measurement at the receiver can be ambiguous even if the channel is noiseless.

Given a quantum state, in general the outcome of a measurement is probabilistic,

making it more difficult to discriminate among the transmitted quantum states.

Although even in the classical case, sending non orthogonal signals through a

noiseless channel prevents the receiver from perfectly discriminating among them,

in the quantum paradigm randomness of the measurement outcomes is an intrinsic

property that comes together with the definition of quantum state.

Secondly, the classical model adopted for the transmitted signal is not ade-

quate to describe a whole set of effects well explained in Quantum Mechanics [2].

For example, the classical wave description for the electromagnetic field cannot

describe accurately the uncertainty in the quadrature that we can observe and

measure for low intensity fields. In this case, a better description is given by

the model of a quantized field, leading to the notions of annihilator and cre-

ation operators to replace the description given by the classical phasor [3]. The

non-commutativity of these operators explains the uncertainty in the quadrature

measurements, bearing the possibility of errors in the discrimination between the

coherent states, which are the quantum model for the laser pulse, even if the

channel is noiseless.

Thirdly, one might suggest to perform multiple measurements on the quantum

state to reduce the uncertainty in the discrimination. However, the act of mea-

suring a quantum state fundamentally changes the properties of the system, such

that successive measurement outcomes are biased by previous ones, and after a

measurement the quantum state is different from the received one. In addition,

simultaneous measurement has limitations in the uncertainty of the outcomes

(Heisenberg uncertainty principle [4, 5]). Moreover, some measurements are dis-
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tructive, and the quantum state is annihilated after the measurement.

Last, in order to overcome such limitation in the measurement, one could think

to copy the receiver quantum state and then perform measurements in each copy.

However, Quantum Mechanics prevents such copy of the quantum information,

according to the so called No Cloning Theorem [6, 7].

Despite these complications, Quantum Mechanics predicts new and more ef-

ficient solutions for the communication scenario. In fact, in some cases these

features of Quantum Physics are the base for new protocols and setups, as in the

case of Quantum Key Distribution [8], where the impossibility to copy quantum

states and the ambiguity that comes from the measurements are exploited to

design secure communication links.

1.2 Deep Space scenario

In some communication scenario Quantum Mechanics is particularly suitable for

the description of the signal transmission, propagation and detection. This is the

case of Deep Space Communications.

Deep Space Communications are extremely challenging [9]. The spacecraft

travels at billions of kilometers from the Earth, collecting data and sending them

back in direction of the Earth. Due to the very long distance of propagation, the

signal beam spreads due to the diffraction, and only a really attenuated signal

reaches the receiver base station.

Due to its spreading, the beam intensity decreases as the square of the distance

between transmitter and receiver, as the distance increases the problem becomes

quadratically more difficult. For example, a geostationary satellite flies at an

altitude of about 40,000 km. With the current technology, it is possible to achieve

a communication link with a capacity of the order of Gigabits per second. If we

consider the same system mounted on a spacecraft approaching Neptune or Pluto

orbits, where the distance is of the order of 4,000,000,000 km, the beam spread

would be 10 billions much higher. Assuming that we operate in the low SNR
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regime, the consequent reduction of the beam power at the receiver reduces the

capacity to 1 bit per second.

To overcome these difficulties, improvements at both transmitter and receiver

side have been developed, such as more powerful transmitter devices and more

sensitive receiver architectures. However, further increases are hard to accomo-

date. Bigger transmitting antennas are difficult to squeeze into launch shrouds,

and increasing transmitted power is challenging due to the difficulties to generate

electrical power from solar energy at such distance from the sun and to remove

the excess heat from the device. At the receiver station, antennas are already

enourmous (34 m and 70 m in diameter for the NASA Deep Space Network)

and operating at few degrees above the absolute zero to implement low-noise

amplifier.

A turning point for deep space communication is the use of much higher

frequency in the EM spectrum, such as those of optical signals. Currently, the

carrier frequencies of the communication signal belongs to the X band (8 GHz).

Although a great improvement has been obtained employing the Ka band (32

GHz), a greater one is expected considering the use of optical frequencies (about

300,000 GHz).

In Figure 1.2 is depicted the comparison of a radio and optical communication

system sending data from the Saturn orbit. The left side of the Figure shows the

transmitted beam spread from the Voyager spacecraft in direction of the Earth,

where a communication system working in the X band is employed. The signal

transmitted from a 3.7 m antennas, by the time it reaches the Earth it spreads

out on an area 1000 Earth-diameter wide. On the contrary, the 10 cm optical

telescope shown on the right side of the Figure, assuming it transmits an optical

wavelength of 1µm (that corresponds to a frequency of 300,000 GHz) causes the

beam to spread to a surface comparable with the Earth section. This represents

an increase in the power density at the receiver of 106 times, achieved with a

much smaller antenna, for a theoretically wavelength-squared advantage of about
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Figure 1.1: Comparison between radio and optical communication for Deep Space

Scenario. On the left side, the radio frequencies cause the signal to spread more

and require a bigger antenna, while in the case of optical frequencies on the right

side the beam undergoes a lower spreading. Courtesy of “Deep Space Optical

Communications”, Hamid Hemmati, Wiley, 2006.

90 dB.

In such a scenario the received signal is so weak and attenuated that can be

considered as composed by a few photons. Therefore, a quantum description is

necessary, in order to exploit the physical phenomena at the level of individual

quanta. As we will see in the next sections, we can take advantage of this new

paradigm to improve the performances of a communication system.

1.3 Capacity improvements by Quantum Mechan-

ics

Information theory was originally formulated by Shannon [10] to seek the ultimate

limit of the amount of information that can be reliably transmitted in a noisy

communication link. This limit, which is referred to as the capacity of the channel,
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was proved in Shannon’s channel coding theorem to be equal to the maximum

amount of mutual information between the input and the output of the channel.

The channel coding theorem has been applied to a variety of noisy communica-

tion links, where the disturbances were described at different levels of abstraction,

ranging from the binary channel to the additive white gaussian noise. In all these

descriptions, the undelying paradigm is classical. Indeed, when classical light

source is employed at the transmitter and the receiver uses standard measure-

ment apparatus such as homodyne, heterodyne or direct detection, a semiclassical

description of the electromagnetic field suffices.

However, in optical communication it is the quantum noise that sets the funda-

mental limits, and the standard structural assumptions preclude the optimization

on nonclassical light sources and nonstandard measurement.

As a study case consider the lossy channel [11]. The action of this channel

is described in terms of input-output relation between the annihilator operator

at the input and output mode, â and â′ respectively. The Trace Preserving

Completely Positive (TPCP) map associated with the lossy channel is

â′ =
√
η â+

√

1− η b̂, (1.1)

with b̂ the annihilator operator associated with the noisy environment. In the

case of η = 1, we have a lossless channel, otherwise for η < 1 we have a pure-loss

channel if the environment mode is the vacuum.

It has been shown [12] that the capacity of a lossless channel, under a con-

straint on the transmitter’s average number of sent photons N , is additive, and

it can be achieved using number states with a Bose-Einstein statistic, leading to

Clossless(N) = (N + 1) ln(N + 1)−N ln(N). (1.2)

Later, it has been proved [11] that also the pure-loss channel is additive, with

capacity

Cpure−loss(ηN) = (ηN + 1) ln(ηN + 1)− ηN ln(ηN), for 0 ≤ η ≤ 1 (1.3)
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that can be achieved with coherent states with a Gaussian prior distribution

p(α) =
e−|α|2/N

πN
. (1.4)

Since (1.3) includes (1.2) as a particular case with η = 1, it is shown that the

capacity of a lossless channel can be achieved both with nonclassical number state

and classical coherent states. However, in the case of photon number states it

suffices to use photon counting at the receiver1 while in the case of random coding

over coherent states a receiver structure achieving the capacity is still unknown.

On the contrary, an homodyne and heterodyne detection scheme on a coherent

state encoding gives the following capacity [13],

Cheterodyne =
ln(1 + 4ηN)

2
, Chomodyne = ln(1 + ηN). (1.5)

Figure 1.2 plots the capacity of pure-loss channel and the heterodyne and ho-

modyne limit. It has been shown that heterodyne detection is asymptotically

optimum,

lim
ηN→∞

Cheterodyne
Cpure−loss

= 1. (1.6)

although in the free space and fiber propagation regime the typical situation is

η ≪ 1, such that to reach the asymptotic regime it is required a very high average

number of transmitted photons.

The study case of the capacity for the lossy channel indicates that when the

quantum paradigm is employed, better performances can be achieved with respect

to the solution proposed by classical paradigm. Other examples can be found for

the problem of discrimination among signals with minimal error probability, and

Chapter 4 is dedicated to this issue when Pulse Position Modulation is employed.

1Since the channel is lossless, a transmitted number state is not disturbed by the channel

and perfectly detected by a photon counter at the receiver.
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Figure 1.2: Capacity of the lossy bosonic channel as a function of the average

received photons ηN . The solid blue line is the optimum capacity Cpure−loss

from eq. (1.3). The green dash-dotted line is the capacity Cheterodyne achievable

with coherent states and heterodyne detection, and the magenta dashed line is the

capacity Chomodyne achievable employing coherent states and homodyne detection,

evaluated from eq. (1.5).
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1.4 Communication System Scenario

A Communication System is a collection of devices built together with the purpose

of conveing information between its users, i.e., to move some kind of knowledge

from a sender to a receiver.

In order to reach a user, the information needs a carrier, that is a physical

observable that allows the sender to encode the message and the receiver to

extract it. Depending on the physical phenomena involved in the process of

transfer the observable from transmitter to sender, we can discriminate classical

and quantum channels. In the former case a classical description of the process

suffices, while in the latter we need to use a quantum description.

This work is focused on classical communication over quantum channel, in the

sense that bits of information are conveyed over a channel that has a quantum

description. In classical communication system, the information is encoded in a

message that can be regarded as a stream of symbols. It was Shannon that in

1948 [10] introduced formal notion of information. He was the first to understand

that in order to quantify the information, we do not have to look at the meaning

of the message. Instead, it is the probability of the realization of the message that

is associated with an amount of information, and we can quantify the information

produced by a stochastic process from its probability distribution.

The Communication System is usually represented as a sequence of devices

that goes from one user, the transmitter Alice, i.e. the source of information, to

the other user, the receiver, called Bob (see Figure 1.3).

On the transmitter side, a sequence of devices convert the information in a

suitable way that can be sent through the media interposed between the two

users.

The realization m of the random process that describe the message is con-

verted into a sequence of bits b by an encoder. Subsequently, the sequence of

bits is mapped in a sequence of signals s(t) that are sent through the channel.

Usually, in order to transfer the message over long distances, the signal is an
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Alice ENC
m

TX
b

Ch
x, s(t)

M−1 DECRC Bob

r(t)

x̂ b̂ m̂

Figure 1.3: Block diagram of a communication system. The blocks correspond-

ing to the user Alice, the encoder ENC, the transmitter map TX compose the

transmitter side, while the blocks of the front-end receiver RC, the inverse map

M−1, the decoder DEC and the user Bob compose the receiver side. Interposed

between the two parts, the channel.
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electromagnetic field that propagates in the media interposed between the sender

and the receiver. The type of signals to be sent are chosen depending on the

modulation format, i.e. a protocol that transmitter and receiver agree to follow.

Usually, the possible signals can be chosen in a finite set of cardinality M called

constellation, so that we can associate each signal with a numeric symbol x in

the set {1, . . . ,M}. Since there is a one-to-one correspondence between signals

and symbols, we can refer indifferently to the former or the latter.

The signal travelling through the media is usually distorted and modified.

The channel is a model of the interaction between the signal and the media,

comprehensive of the disturbances introduced by the environment. In the case of

an ideal channel, the travelling signal reaches the receiver side unmodified.

Out of the channel, at the receiver side, a device tries to estimate the trans-

mitted sequence of symbols from the output r(t) of the channel. Then, an inverse

map converts the sequence of estimated symbols x̂ in the sequence of bits b̂, and

a decoder returns to the final user an information in the same form of the original

process.

1.4.1 Classical Communication over Quantum Channel

In Figure 1.3, the communication system has been pictured as a cascade of logic

blocks, each one representing a device. The decomposion in simple blocks is a

common paradigm in engineering, that allows to focus only on the design and

optimization of few parts of the communication system at a time.

In fact, in the description of a transmission system, we can ignore (at the

transmitter side) the random process with values m, the encoder for the bit

stream b and even the transmitter: a description of the possible signals s(t), or

the corresponding symbols x, with the probability distribution calculated from

the chain source-encoder-transmitter suffices, and we can replace the chain with

a single source, as in Figure 1.4.

For the same reason, at the receiver side, we can put together in a single block

the chain M−1-decoder-Bob.
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Alice
Channel

{Ek}k
x, ρx

RC
ρ̃x

Bob
x̂

Figure 1.4: Simplified block diagram for a communication system with a quantum

description of the channel, given by eq. (1.11). The transmitter Alice sends a

simbol x associated with the density operator ρx through the channel, which mod-

ifies the density operator in ρ̃x. From this quantum state, the receiver estimates

the transmitted symbol, returning the estimation x̂ to the final user, Bob.

In Figure 1.4 we resume the scheme of Figure 1.3 with the simplification

mentioned above.

The model that represents a logic block can have more or less fine details,

and in general different assumptions lead to use different models. For example,

in the case of the channel, great development has been achieved with a classical

model of physical phenomena, but as previously seen in Sections 1.2,1.3 in some

regimes a quantum model fits best and allows to improve performance.

In this case, it seems appropriate to talk about Classical Communication over

a Quantum Channel. As a consequence, the transmitted signal s(t) and the

received signal r(t) must be described according to the quantum model of the

channel.

Denoted with H the quantum system that describes the transmitted and re-

ceived signals, and with L(H) the set of linear operators on H, the transmitter

associates to each simbol x ∈ {1, . . . , i, . . . ,M} a quantum state described by a

density matrix in the set

ρx ∈ {ρ1, ρ2, . . . , ρM} ⊂ D(H), (1.7)

where D(H) denotes the set of all the density matrices of H,

D(H) = {ρ ∈ L(H)|ρ = ρ† ≥ 0, tr (ρ) = 1}. (1.8)

Sometimes, e.g. in the binary case, it is customary to enumerate the possible

values for the symbols x starting from 0.
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In the case of pure quantum states, the density matrix ρx reduces to

ρx = |γx〉〈γx|. (1.9)

The simbols, and hence the quantum states, are drawn with a priori proba-

bility

{p1, p2, . . . , pM}. (1.10)

The channel, usually an optical fiber or the free space in telecommunication

system, modifies the transmitted density operator ρx, and the output density

operator ρ̃x ∈ D(H) can be described by a linear map E : D(H) → D(H) that

acts as in

ρ̃x =
∑

k

E†
kρxEk , (1.11)

where the operators {Ek} are called Kraus operators and (1.11) is called Kraus

representation. In order for the map represented by the Kraus operator {Ek} to

be stochastic, that is, Completely Positive and Trace Preserving (CPTP), it is

required that
∑

k

EkE
†
k = IH. (1.12)

In some cases, the map is also unital, that is it verifies Φ(I) = I, if it holds

∑

k

E†
kEk = IH. (1.13)

The receiver, given the density operator ρ̃x, performs a measurement on the

Hilbert space. The measurement is defined by a set of operators {Pk} which in

general are Positive Operator Valued Measurement (POVM), i.e. a set of positive

Hermitian operator

P †
k = Pk, Pk ≥ 0 (1.14)

that sum up to the identity
∑

k

Pk = IH. (1.15)

The constraint (1.15) is called relation of completeness.
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As a particular case, the POVM {Pk} can be projectors {Πk} on some sub-

space of the Hilbert space H, such that they also verify

ΠjΠk = δj,k Πj, ∀j, k. (1.16)

The measurement operators {Pk} are defined on the Hilbert Space H. Each

Pk is associated with an outcome of the measurement. As already anticipated,

the receiver tries to estimate the transmitted quantum state ρx and hence the

symbol x. In general the cardinality of the outcome set can be greater that the

cardinality of the symbol set. The receiver sets a rule for the association between

the outcome and the estimate quantum state, with the meaning

“When I measure the outcome of Pk, I estimate that ρk has been transmitted.
′′

(1.17)

From the mathematical point of view, the estimate is a new random variable, x̂,

with values

x̂ ∈ { 1, . . . ,M}. (1.18)

that is with the same alphabet as x (see Figure 1.4). Sometimes, we will use the

symbols {1̂, . . . , M̂} as a shorthand notation to indicate the realization of the

measurement.

Following the block-paradigm described above, we can describe the sequence

channel-receiver in a new block that describes with transition probabilities the

transformation between the random variables x and x̂. From the point of view of

the measurement design, this means that we can group all the {Pk}k associated

with the same estimate ρ̂x̂, and define a new POVM P̃k. For this reason, I will

consider without loss of generality a set of {Pk}k with cardinality M .

From the definition of the POVM, we can calculate the probabilities of the

outcomes given that the state ρi has been sent (Born Rule)

P [x̂ = j|x = k] = P [outcome is j of Pj| ρk has been transmitted ]

= tr (Pjρk) (1.19)

(if ρk is a pure state) = 〈γk|Pj|γk〉.
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x

M

3

2

1

P [x̂|x] x̂

M̂

3̂

2̂

1̂

Figure 1.5: Representation of the channel between symbols x and outcomes x̂, de-

scribed through arrows that indicate the positive transition probabilities P [x̂|x].

In order to simplify the equation, sometimes we will use the following shorthand

notation

pĵ|k = P
[

x̂ = ĵ|x = k
]

, pĵ,k = P
[

x̂ = ĵ, x = k
]

,

pk = P [x = k] , pĵ = P
[

x̂ = ĵ
]

,

(1.20)

where the vertical bar or the comma in the subscript indicates if we are referring

to a conditional or joint probability, respectively. This transition probabilities

define the channel between the values of the random variable x and x̂, as in

Figure 1.5.

In order to evaluate the system, a figure of merit that can be considered is

the probability of correct decision

Pc = P [x̂ = x] =
M∑

k=1

P [x̂ = k, x = k] =
M∑

k=1

P [x̂ = k|x = k] pk, (1.21)

that can be rewritten as

Pc =
M∑

k=1

tr (Pkρk) pk =
M∑

k=1

tr (Pkρkpk) . (1.22)
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Sometimes it is more useful to define the complementary probability, the error

probability

Pe = 1− Pc =
∑

i

∑

k 6=i
P [x̂ = k|x = i] pi =

∑

i

∑

k 6=i
tr (Pkρi) pi (1.23)

When the correct decision probability is assumed as a performance figure to

evaluate the Communication System, the problem statement is to find the set of

POVM, satisfying the constraints of Hermitianity and semi-definite positiveness

(1.14) and the completeness relation (1.15), that maximizes Pc.

1.5 Capacity of a Quantum Channel

In the design of a Communication System, particular attention must be paid to

the type of information that we want to convey from the sender to the receiver.

The information transmitted could be of two kind,

1. classical information, when we aim at transmitting bits,

2. quantum information, when we aim at transmitting qubit.

Of course, the choice of which information is delivered depends on the application

for the two users. In both cases, the communication system must be devised to

counteract the noise and the effect of the quantum channel interposed between

sender and receiver.

A channel absolute parameter for the limit performances for the realible in-

formation delivered is given by the concept of capacity. As we recall from Section

1.3, the capacity of a classical channel is obtained from the mutual information

between Alice’s transmitted symbols x and Bob’s estimated symbols x̂,

H(x; x̂) =
∑

x,x̂

px̂|xpx

(

log px̂|x − log
∑

x′

px̂|x′px′

)

(1.24)

which depends on both the transition probabilities px̂|x induced by the channel

and the a priori probabilities px. The Capacity of the channel described with
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a given transition probabilities is defined as the maximum of (1.24) over the a

priori distribution of the symbols,

CShan = sup
{px}

H(x; x̂). (1.25)

The operational meaning of the capacity comes from the Shannon’s noisy channel

coding theorem [10]. The theorem says that in the presence of a channel with

capacity CShan, and with many (actually, in the limit of infinite) uses of the

channel, there exist a coding and decoding scheme that allows to convey up

to R < CShan bits of information per channel use, with arbitrarily vanishing

probability of error.

The proof of the theorem is beyond the purpose of this work, but we want

to highlight that it considers the transmission of long sequences of n symbols

x̄ = [x1, x2, . . . , xn], with each xi ∈ {1, . . .M} drawn with its a priori probability

pxi = px, while at the receiver each symbols is measured individually and at the

end an estimation on the global sequence is performed taking advantage of the

concept of typicality.

In the case of quantum channels, the classical model in not rich enough to

include quantum effects. Quantum Information Theory extends the classical

counterpart to take into account the peculiarity of quantum mechanics. As a

consequence, a quantum channel can be characterized with different capacities

depending of the communication task, such as to convey classical or quantum

information.

Here we focus in the transmission of classical information on a quantum chan-

nel. A reader interested in the transmission of quantum information can found a

brief introduction in [14] and references therein.

Even when considering the delivery of classical information, several definitions

of capacities has been proposed, depending on the coding and decoding strategy

allowed to the sender and to the receiver [14, 15]. Bennett and Shor [16] have

identified four possibilities, CPP , CPE, CEP and CEE, depending whether product

states only or entangled states (first digit P or E) are allowed in the transmission
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and product measurement or entangled measurement (second digit P or E) are

allowed in the detection. Leaving aside CEP , is it clear that since transmission

and detection strategies employing entangled states and measurement are more

general, it holds

CPP ≤ CPE ≤ CEE. (1.26)

When no entanglement is allowed at either end, the channel is equivalent to

a classical noisy channel with the transition probabilities defined from the states

and the measurement operators as in (1.19). Following the strategy of the classical

coding, we can consider the n-th extension of the Hilbert space H⊗n = H⊗· · ·⊗H
where are well defined the sequences of n states transmitted successively,

ρ(n) = ρ1 ⊗ · · · ⊗ ρn. (1.27)

In the assumption of memoryless channel, the corresponding channel for the

sequence is just the juxtapposition of the action of the channel to each symbol,

E (n)(ρ(n)) = E(ρ1)⊗ E(ρ2)⊗ · · · ⊗ E(ρn), (1.28)

The capacity CPP can be evaluated as

CPP = sup
px,ρx,Px̂

H(x; x̂). (1.29)

and it really resemble Shannon capacity CShan except that it requires an optimiza-

tion with respect the a priori probabilities {px}, the transmitted states {ρx} and

the measurement operators {Px̂}. Of course, the capacity CPP with the optimal

states and measurements operators equal CShan with the same states and POVM.

In the case of product states and entanglement measurements, the transmitter

can encode the message in product sequences as (1.27) and the receiver can employ

global measurement on the whole sequence. In this case the classical capacity is

indicated with CPE or with C(1), where the superscript indicates that for the

coding are allowed only sequences of quantum states defined in a single Hilbert

space.
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The possibility of entanglement measurements gives rise to the first differences

in terms of results between the classical and the quantum case. An important

result that constitutes the counterpart of the classical noisy channel coding the-

orem has been formulated first in [17] for the restricted case of pure states, and

then in [18, 19] in the more general case of mixed states.

Theorem 1.1. Holevo–Schumacher–Westmoreland, Noisy Channel Cod-

ing for Classical Information

Let E be a quantum channel, define the Holevo quantity or Holevo capacity

χ(E) = max
pi,ρi

S

(

E
(
∑

i

piρi

))

−
∑

i

piE (ρi) (1.30)

where the maximization is made with respect to the input quantum states {ρi}
and their a priori distribution {pi} employed in the communication. The quantity

(1.30) is the classical capacity of E when considering the transmission of product

states and allowing for entangled measurements,

χ(E) = CPE. (1.31)

Therefore, in the case of CPE, there is an expression that allow to evaluate

the capacity. As already stated, it is clear that

CShan ≤ CPE (1.32)

and examples in which this inequality is strict have been provided by Holevo [20].

In addition, a necessary and sufficient condition for the strict inequality results

to be the commutativity of the input quantum states {ρi} [21]

A third possibility is to employ quantum states entangled in n uses of the

channel for the encoding as well as entangled measurement operators. In this

case, the capacity of the channel is indicated with CEE, or with C(n), where the

superscript indicates that the quantum states are entangled over n uses of the

channel. Finding the capacity of the channel E when the states are encoded over

n uses of the channel and entangled measurements are allowed, is equivalent to
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find the capacity C(1) of the channel E (n). Despite this, question whether the use

of entangled quantum states can actually improve the capacity of the channel,

that is wheter CEE can striclty exceed CPE, is still an open question.

1.6 Summary of the Results

In this Thesis we consider the communication scenario and in particular the

discrimination problem associated with the detection of the transmitted quantum

states. We focus on the design of a receiver that can outperform the classical

schemes and approach the theoretical quantum limit. Since at the moment no

clear instructions are known to implement such a receiver, an optimization process

is always necessary in order to overcome the classical phenomena and trigger the

quantum effects.

In the next Chapter we set up the discrimination problem betweeen two co-

herent states. This issue applies to the detection of signals in an optical binary

coherent communication scenario, where an optimal receiver has been theoreti-

cally described and experimentally tested. Due to its properties, a coherent state

of duration T can be viewed as a sequence of shorter and weaker modes of dura-

tion T/N . The discrimination of the coherent states can be hence interpreted as a

discrimination among multiple copies of the same state. With this interpretation,

we were able to infer the Dolinar receiver, the only example of implementation of

a quantum receiver reaching the limit performance, as a multiple copy adaptive

measurement on the segmented states. In addition, using the multiple copies

theory, we propose a suboptimal simplified version of the Dolinar’s scheme.

In the third Chapter we consider the problem of transmitting classical informa-

tion over a noisy quantum channel. Given a description in terms of a Completely

Positive Trace Preserving qubit map, we optimize the input states and the out-

put measurements with respect to both error probability and classical capacity

figures of merit. Via the coherence vector representation we are able to geometri-

cally characterize the action of the channel, and find necessary condition for the
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optimality of the quantum states and measurements, allowing us to reformulate

the optimization in a form that can be solved by standard numerical algorithms.

In the fourth Chapter we study the disctimination problem among the Pulse

Position Modulation signals. This modulation is particularly suitable for satel-

lite and deep space communication scenario due to its high energy efficiency.

Although a quantum receiver reaching the limit performance still has to be dis-

covered, several suboptimal schemes has been proposed. We review these schemes

and reformulate them in a qubit framework in order to highlight their limitations.

Then, we propose an adaptive scheme to overcome these limitations. By applying

a dynamic programming optimization, we are able to optimize the measurements

operator, obtaining a receiver scheme which outperform all the existing architec-

tures.

The last Chapter summarizes the results and concludes the Thesis.



Chapter 2

Binary Quantum Receivers

Binary modulation is the simplest modulation format by many points of view. In

terms of encoding, it provides a direct mapping between the bit stream and the

signals sequence to be sent through the channel, without additional encodings. In

terms of hypothesis discrimination the problem is simplified since discarding one

hypothesis implies the assumption of the other. In terms of signal generation and

transmission, it requires a simple two-valued modulation for the physical quantity

involved. In this section, I review the main receiver schemes for quantum bi-

nary modulation, leading the attention of the reader into the concept of adaptive

measurement.

2.1 Introduction

In Quantum Detection Theory, the binary modulation of quantum states has

been the most studied modulation, used since the first developments in quantum

mechanics to test theoretical predictions. This effort has led to great results in

both theoretical and experimental analysis.

Referring to the communication scenario in Figure 1.3, in the case of binary

modulation the bit stream {b}i encoding the sender message is directly mapped

into the symbol sequence {x}i. Each symbol x ∈ {0, 1} is then associated to a

quantum state ρ ∈ {ρ0, ρ1}, ρ ∈ D(H) and sent through the channel. As usual,

33
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symbol x is described as a random variable with a priori probability p0, p1.

In the scenario of binary hypothesis testing, the problem of discrimination

between ρ0 and ρ1 has been completely addressed by Helstrom [22], who found

the optimal performance and the operators to achieve it in terms of POVM. Due

to the simplicity of the binary modulation, optimal POVM can be easily found.

Consider in fact the pair of POVM (P0̂, P1̂) employed by the receiver to dis-

criminate between the transmitted quantum states. The receiver estimates the

transmitted quantum state x = 0 if the outcome x̂ = 0̂ is observed, otherwise the

hypothesis x = 1 is taken.

The probability of correct decision reads

Pc = P [x̂ = x] = P
[
x̂ = 0̂|x = 0

]
p0 + P

[
x̂ = 1̂|x = 1

]
p1 (2.1)

= tr (P0̂ρ0) p0 + tr (P1̂ρ1) p1 (2.2)

The completeness relation in the case of binary modulation becomes P0̂ + P1̂ = IH0
,

thus

Pc = tr (P0̂ρ0p0 + P1̂ρ1p1) = tr ((I − P1̂)ρ0p0 + P1̂ρ1p1) (2.3)

= p0 + tr (P1̂(ρ1p1 − ρ0p0)) (2.4)

The solution to the maximization of (2.4) comes from the eigenvalues decompo-

sition of ∆ = ρ1p1 − ρ0p0. Define the eigenvector |ν〉

(ρ1p1 − ρ0p0) |ν〉 = ν |ν〉 (2.5)

In order to maximize the probability of correct decision (2.4), the POVM P1̂

must be the projector on the subspace of ρ1p1 − ρ0p0 associated with positive

eigenvalues1,

P1̂ =
∑

ν>0

|ν〉〈ν|, P0̂ = I − P1̂ =
∑

ν<0

|ν〉〈ν| (2.6)

and the probability of correct decision becomes

Pc = p0 +
∑

ν>0

ν (2.7)

1The projector associated to possible null eigenvalues can be indifferently included in P0̂ or

in P1̂.
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In the case of pure states ρ0 = |γ0〉〈γ0|, ρ1 = |γ1〉〈γ1| the analysis may be

simplified. Define H0 as the subspace of H spanned by {|γ0〉 , |γ1〉}. Since H0 has

dimension two, i.e. H0 ∼ C
2, we can define an orthonormal basis |x〉 , |y〉 ∈ H0

such that without loss of generality we can write

|γ0〉 = cos θ |x〉+ sin θ |y〉
|γ1〉 = cos θ |x〉 − sin θ |y〉

, θ ∈ [0, π/4] (2.8)

with inner product χ = 〈γ0|γ1〉 = cos(2θ) . As we have seen, the optimal POVM

are projectors, and it has been proved elsewhere [23] that in the case of pure

states, these projectors have rank 1. Define the measurement operator in the

basis {|x〉 , |y〉} as

|µ0̂〉 = cosφ |x〉+ sinφ |y〉 (2.9)

|µ1̂〉 = sinφ |x〉 − cosφ |y〉 (2.10)

The probability of correct decision can be written as

Pc = |〈µ0̂|γ0〉|2p0 + |〈µ1̂|γ1〉|2p1 (2.11)

= cos2(θ − φ)p0 + sin2(θ + φ)p1

=
1 + cos(2θ − 2φ)

2
p0 +

1− cos(2θ + 2φ)

2
p1 (2.12)

The search for stationary points of (2.12) with respect to the angle φ reads

tan 2φ =
1

p0 − p1
tan 2θ (2.13)

that is solved for

φ =
1

2
arctan

[
1

p0 − p1
tan 2θ

]

+ l
π

2
, l ∈ Z. (2.14)

An analysis of the second derivative reveals that the point of maximum is obtained

for even values of l, such as

φ =
1

2
arctan

[
1

p0 − p1
tan 2θ

]

, (2.15)
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verifying

sin 2φ =
1

R
sin 2θ

cos 2φ =
p0 − p1
R

cos 2θ

(2.16)

with

R =
√

sin2 2θ + (p0 − p1)2 cos2 2θ =
√

1− 4p0p1 cos2 2θ, (2.17)

while the point of minimum, obtained for odd values of l, has the opposite sign

in the right-hand side of both (2.16).

The maximized probability of correct decision is called the Helstrom Bound,

Pc =
1

2

[

1 +
√

1− 4p0p1χ2
]

. (2.18)

2.1.1 Binary modulation implementations

The binary modulation can be easily implemented with coherent states. Both

intensity and phase modulations can be considered in order to encode the symbol

x.

In the case of intensity modulation, the modulation is called On Off Keying

and makes use of the following associations

x = 0 −→ |γ0〉 = |0〉
x = 1 −→ |γ1〉 = |2α〉

(2.19)

with inner product χ = |〈0|2α〉| = e−2|α|2 . This modulation can be easily imple-

mented with a laser source and an intensity modulator that shuts down the laser

pulse in correspondence of the time interval of the symbol x = 0.

In the case of phase modulation, the association between symbol x and trans-

mitted quantum state reads

x = 0 −→ |γ0〉 = |α〉
x = 1 −→ |γ1〉 = |−α〉

(2.20)

with inner product χ = |〈−α|α〉| = e−2|α|2 . The modulation is called Binary

Phase Shift Keyed, BPSK. In this chapter, we will focus on the latter binary

coherent modulation.



2.2. KENNEDY RECEIVER 37

Note that following the definition (2.19) and (2.20), the inner product of the

transmitted quantum states is the same and so is the optimal performance by

(2.18). This is also motivated by the fact that, in the absence of noise, at the

receiver side we can go from one modulation to the other applying a displace-

ment operation on the incoming quantum state, as used in the Kennedy receiver

described in the next section.

2.2 Kennedy Receiver

Classical coherent communication relies on homodyne and heterodyne detection

to discriminate between the two signals in BPSK modulation. These receiver

schemes implement a phase measurement of the incoming unknown coherent

state: the received optical mode is mixed with a strong local oscillator through

a balanced beam splitter, and an intensity measurement is performed on the

two output modes. In the case of homodyne detection, the local oscillator is in

phase with the signal, that is at the same optical frequency, while in the case of

heterodyne detection the oscillator is detuned, i.e. with a much higher frequency.

In the absence of thermal noise, with BPSK detection both homodyne and

heterodyne receiver have the same performance. For signal with equal a priori

probability, the probability of correct decision is given by2

P (homodyne)
c = 1− erfc(

√

2|α|2)
2

= 1−Q
(√

4|α|2
)

(2.23)

The first receiver scheme that shows the possibility to beat the classical ho-

2Different textbooks and papers [24, 9, 25] use different notations. The Complementary

Error Funcion erfc is defined by

erfc(x) =
1√

π
∫
∞

x
e−t2 dt

(2.21)

while Q(·) is the tail probability of the standard normal distribution,

Q(x) =
1

√
2π
∫
∞

x
e−

t2

2 dt
(2.22)

.
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D(−α)
|(−1)xα〉

PC

(a)

x = 1

x = 0

x̂ = 1̂

x̂ = 0̂

p1̂|1

p0̂|0

(b)

Figure 2.1: (a) Scheme of the Kennedy receiver. The incoming coherent state

|(−1)xα〉 is first displaced by D(−α) and then a photon counter PC seeks for

photons in the symbol time interval. (b) Transition probabilities.

modyne limit was proposed by Kennedy [23]. A diagram of the Kennedy receiver

is depicted in Figure 2.1. The incoming unknown coherent state is displaced with

D(−α), such that in the case of coherent state |α〉 it is displaced to the vacuum

state |0〉, while in the case of the coherent state |−α〉 it is displaced by |−2α〉.
After the displacement operation, a photon counting is performed in the time

symbol interval.

Let us assume the photon counter has unit efficiency and no dark counts.

Define as z = 0̂, 1̂ the outcomes from the photon counter, where

P0̂ = |0〉〈0|, P1̂ = I − P0̂ =
∑

n∈N
|n〉〈n| (2.24)

Let us also define the following rule for the estimation of the symbol x,

z = 0̂ −→ x̂ = 0

z = 1̂ −→ x̂ = 1
(2.25)

The scheme is designed such that, in the absence of noise, the symbol x = 0

corresponding to the quantum state |α〉 is displaced to the vacuum and perfectly

detected by P0̂, that is

p0̂|0 = tr
(
P0̂D(−α)|α〉〈α|D†(−α)

)
= 1. (2.26)

Therefore, the only error in this receiver scheme arises when the symbol x = 1,

displaced in |−2α〉, is misdetected to an outcome z = 0̂. Since this event can occur
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with probability

tr
(
P0̂D(−α)|−α〉〈−α|D†(−α)

)
= tr (P0̂|−2α〉〈−2α|) = |〈0|−2α〉|2 = e−4|α|2

(2.27)

the global probability of correct decision of the Kennedy receiver is given by

P (Kennedy)
c = p0 + p1(1− e−4|α|2) (2.28)

or in general

P (Kennedy)
c = 1−min{p0, p1}e−4|α|2 . (2.29)

In Figure 2.3, the error probability of the homodyne detector and the Kennedy

receiver are compared with other receiver schemes presented in the following sec-

tions with respect to the average photon number. The Kennedy receiver performs

better than the homodyne limit for an average photon per symbol greater than

about 0.5, and the gap between the performances spread out as the photon num-

ber increases. However, in practice for high average photon numbers the perfor-

mance of the Kennedy receiver is limited by dark counts, that with a probability

of 10−6 prevents to go underneath this thresold.

2.3 Improved Kennedy Receiver

The Kennedy receiver provides a near optimal scheme for the discrimination of

the BPSK signal that approach the Helstrom bound exponentially as |α|2 → ∞,

PHelstorm
c − PKennedy

c ∼ e−4α2

. (2.30)

Despite that, the scheme is not robust against dark counts and thermal noise [26],

and a mode mismatch between the BPSK signal and the added local oscillator

causes additional dark counts. Furthermore, the complete nulling of the coher-

ent state |−α〉 is not proven to be the optimal choice in order to maximize the

probability of correct decision with this architecture.

Takeoka and Sasaki [24] have proposed some improvements for the Kennedy

receiver by means of a Gaussian measurement. An operator is said to be Gaus-

sian if it maps Gaussian states into Gaussian states, that is an operation that
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D(−β)
|(−1)xα〉

PC
|(−1)xα− β〉

Figure 2.2: Scheme of the Generalized Kennedy receiver. A displacement oper-

ation D(−β) is performed on the incoming unknown coherent state, and subse-

quently a photon counting is performed.

generalizes the phase rotation, displacement and squeezing operation on coherent

states. A Gaussian measurement usually consists of adding some ancillary Gaus-

sian states, apply Gaussian operations and perform homodyne measurements.

In [24] they show that a receiver employing only Gaussian measurement cannot

achieve the Helstrom bound, and can at most reach the homodyne error proba-

bility.

In order to approach the Helstrom limit, we need to consider non-Gaussian

operation devices, such as photon counters. Consider the receiver scheme of

Figure 2.2, where a Gaussian operation is followed by a photon counting. The

scheme reconduces to the Kennedy receiver when the gaussian operation is the

displacement D(−α). Since a Gaussian operation generalize the displacement

operation, we expect to improve the error probability by the optimization of the

Gaussian operation.

In [24] it is shown that phase rotations are unneccessary, and the optimal

conditions for displacement and squeezing are evaluated. Here we consider only

the optimization of the displacement value, for a receiver architecture such as the

one in Figure 2.2 , called Generalized or Improved Kennedy receiver.

Consider a displacement D(−β) of the incoming unknown BPSK signal, with

β to be optimized. Using the same estimation rule (2.25) of the Kennedy receiver,

the correct detection probability becomes

P (Gen.Kennedy)
c = p0〈α− β|P0̂|α− β〉+ p1〈−α− β|P1̂|−α− β〉 (2.31)

= p0e
−(α−β)2 + p1(1− e−(α+β)2) (2.32)
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By nulling the derivative with respect to β, we find that the displacement value

β∗ maximizing (2.32) satisfies the transcendental equation

p0
p1

=
β∗ + α

β∗ − α
e−4β∗α (2.33)

which can be numerically solved and the corresponding value of P
(Gen.Kennedy)

c

evaluated.

In Figure 2.3 the performance of the generalized Kennedy receiver is com-

pared with the Kennedy receiver, the Helstrom bound and the homodyne limit,

assuming equal a priori probability p0 = p1 = 1/2. For large values of α the im-

provement obtained by optimizing the displacement β is negligible. On the other

hand, as α goes to 0, the performance of the Generalized Kennedy approximates

the Helstrom bound.

2.4 Multiple Copy State Discrimination

The scenario of the multiple copies problem is slightly different from the one

presented in Section (1.4). In this case, Alice chooses a binary symbol x ∈ {0, 1}
with a priori probability {p0, p1}, and accordingly to the choosen symbol she

sends to the receiver Bob N copies of the quantum state |γ0〉 or |γ1〉. Bob has to

guess which symbol has been choosen, possibly taking advantage of the multiple

resources.

The ensemble sent to Bob can be appropriately described in the tensorial

product Hilbert Space H = H⊗N
0 , namely

|γ̄0〉 = |γ0〉 ⊗ . . .⊗ |γ0〉
|γ̄1〉 = |γ1〉 ⊗ . . .⊗ |γ1〉

(2.34)

The multiple copies problem is still a binary discrimination problem, but

formulated on quantum states |γ̄0〉 and |γ̄1〉. The Helstrom theory introduced in

Section 2.1 still applies, and the maximum probability of correct decision is given

by the Helstrom bound (2.18)

Pc =
1

2

[

1 +

√

1− 4p0p1X
2

]

=
1

2

[

1 +
√

1− 4p0p1χ2N
]

(2.35)
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where X = 〈γ̄0|γ̄1〉 is the inner product between |γ̄0〉 and |γ̄1〉, and by definition

(2.34) is equal to X = χN = 〈γ0|γ1〉N , with χ the inner product of |γ0〉 and |γ1〉.
The interest for this problem comes from the different measurement scheme

that Bob can use to approach (2.35). By Helstrom discrimination theory, Bob

may achieve this bound by a global measurement using suitable von Neumann

projectors Π0̂ = |µ̄0̂〉〈µ̄0̂|, Π1̂ = |µ̄1̂〉〈µ̄1̂| over the product space H. Unfor-

tunately, the optimum measurement vectors |µ̄0̂〉 , |µ̄1̂〉 turn out to be a linear

superposition of the pure states |γ̄0〉 , |γ̄1〉, entangled over the multiple copies in

the spaces H0.

On the other hand, Bob may employ local measurement schemes on single

spaces H0. Interestingly, the same performance (2.35) can be achieved using an

optimized adaptive local scheme [27, 28, 29].

Assume that the local measurement orthonormal vectors are described as in

(2.10), namely

|µ0̂(z̄k−1)〉 = cosφz̄k−1
|x〉+ sinφz̄k−1

|y〉 (2.36)

|µ1̂(z̄k−1)〉 = sinφz̄k−1
|x〉 − cosφz̄k−1

|y〉 (2.37)

where the angle φz̄k−1
that defines the k-th measurement operators depends on

the list of the previous individual measurements z̄k−1 = [z1, z2, . . . , zk−1]. The

adaptive optimization problem consists in finding a starting measurement angle

φ∅ (the symbol ∅ indicates that does not depend on any previous outcomes) and

a recursive rule that defines the next measurement angle,

φz̄k−1
= fk(z1, z2, . . . , zk−1) . (2.38)

The global measurement operators are given by

|µ̄z̄N 〉 = |µz1〉 ⊗ |µz2(z1)〉 ⊗ · · · ⊗ |µzN ([z1 . . . zN−1])〉 (2.39)

and we can readily see that all these operator sum up to the identity in H,

∑

z̄N∈ZN

|µ̄z̄N 〉〈µ̄z̄N | = IH (2.40)
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with ZN the set of all the binary sequence of outcomes of length N .

The estimation rule is defined in such a way that the last outcome (the right-

most binary digit of z̄N) gives the final hypothesis for |γ0〉 or |γ1〉. Thus, we

have

Pc =
∑

z̄∈ZN−1

(
P
[
zN = 0̂, z̄|x = 0

]
p0 + P

[
zN = 1̂, z̄|x = 1̂

]
p1
)

(2.41)

=
∑

z̄∈ZN−1

(
P
[
zN = 0̂|z̄, x = 0

]
P [z̄, x = 0] + P

[
zN = 1̂|z̄, x = 1

]
P [z̄, x = 1]

)

=
∑

z̄∈ZN−1

(
|〈µ0̂(z̄)|γ0〉|2P [z̄, x = 0] + |〈µ1̂(z̄)|γ1〉|2P [z̄, x = 1]

)
(2.42)

The maximization with respect to φz̄, z̄ ∈ ZN−1, has a solution similar to

(2.15), leading to the relation3

tan 2φz̄ =
pz̄,0 + pz̄,1
pz̄,0 − pz̄,1

tan 2θ, (2.44)

that is

sin 2φz̄ =
pz̄,0 + pz̄,1
R(z̄)

sin 2θ, (2.45)

cos 2φz̄ =
pz̄,0 − pz̄,1
R(z̄)

cos 2θ, (2.46)

with R(z̄) the normalization factor

R(z̄) =
√

[pz̄,0 + pz̄,1]2 sin
2 2θ + (pz̄,0 − pz̄,1)2 cos2 2θ (2.47)

=
√

[pz̄,0 + pz̄,1]2 − 4pz̄,0pz̄,1 cos(2θ)2 . (2.48)

Substituting back in (2.42) we obtain

Pc =
1

2
+

1

2

∑

z̄∈ZN−1

R(z̄) (2.49)

Although this appears to be a dynamic programming problem [30], and as such

has been dealt with and solved in [28], it turns out that there is a much simpler

3We use the shorthand notation of equations (1.20) for the joint probabilities

pz̄,i = P [z̄, x = i] . (2.43)
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solution. The problem reduces to a Bayesian updating problem with recursive

relation

φ[z1...zk−1] = fk(zk−1) (2.50)

so that the optimal angle at the k-th measurement depends only on the previous

outcome. It is convenient to change the notation on the dependence of the angle,

and simply define as φk(zk−1) = φ[z1...zk−1] the angle in (2.50).

By the Bayesian update, the optimal measurement angle φk is the solution

of the binary discrimination problem obtained replacing the a priori probabilities

P [x = 0] and P [x = 1] with the a posteriori probabilities given the last outcome,

that are P [x = 0|zk−1 = i] and P [x = 1|zk−1 = i]. In particular, the following

result holds.

Proposition 2.1. The a posteriori probabilities after the measurement on the

k-th copy are given by the Helstrom bound

P [x = i|zk = i] =
1

2

[

1 +
√

1− 4p0p1χ2(k)
]

i = 0, 1, (2.51)

and the subsequent optimal measurement angle is given by

φk(zk−1) =
1

2
arctan

[
1

P [x = 0|zk−1 = i]− P [x = 1|zk−1 = i]
tan 2θ

]

(2.52)

=
1

2
arctan

[

(−1)zk−1
1

√

1− 4p0p1χ2(k−1)
tan 2θ

]

, k = 1, . . . , N.

(2.53)

Proof. This result can be proven by induction. Given the a priori probability p0

and p1, the optimization of the first angles leads to (2.15), and the probability of

correct decision P
(1)
c after the first measurement is given by the Helstom bound

P (1)
c =

1

2

[

1 +
√

1− 4p0p1χ2
]

(2.54)



2.4. MULTIPLE COPY STATE DISCRIMINATION 45

Then, the result is proven for k = 1. The a posteriori probabilities read

P
[
x = 0|z = 0̂

]
=
P
[
z = 0̂|x = 0

]
p0

P
[
z = 0̂

] =
cos2(θ − φ1)p0

cos2(θ − φ1)p0 + cos2(θ + φ1)p1
(2.55)

=

[

1 + cos2 2θ
R (p0 − p1) +

sin2 2θ
R

]

p0

1 + cos2 2θ
R (p0 − p1) +

sin2 2θ
R (p0 − p1)

(2.56)

=

[
R + cos2 2θ(p0 − p1) + sin2 2θ

]
p0

R + p0 − p1
· R− (p0 − p1)

R− (p0 − p1)
(2.57)

=
1

2
[1 +R] (2.58)

where in (2.56) we substitute the optimal angle φ1, and R has the usual definition

(2.17). Similarly, one can see that it holds for P
[
x = 1|z = 1̂

]
. Now suppose that

the result holds true for k. From the inductive hypothesis, the provisional correct

detection coincides with the Helstrom bound, the adaptive measurement up to

the k-th copy coincides with the optimal global measurement and the a posteriori

probabilities are

P [x = i|zk = i] = P (k)
c . (2.59)

The optimization of φk+1 gives the solution obtained by replacing p0 and p1 in

the expression (2.15) with the a posteriori probability, leading to

P (k+1)
c =

1

2

[

1 +

√

1− 4P
(k)
c

[

1− P
(k)
c

]

χ2

]

=
1

2

[

1 +
√

1− 4p0p1χ2(k+1)
]

2

We can evaluate the a posteriori probability and the angles sequence offline.

The optimum local adaptive measurement can be summarized by the following

step–by–step procedure.

1. From the overlap coefficient χ and the input probabilities p0 and p1 evaluate

φk =
1

2
arctan

[

(−1)zk−1
1

√

1− 4p0p1χ2(k−1)
tan 2θ

]

(2.60)
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and compute the double sequence of measurement angles

φ1 φ2 . . . φN

−φ1 −φ2 . . . −φN
(2.61)

2. Start with angle φ1 if P [x = 0] ≥ 1/2 and −φ1 otherwise.

3. Use the angles of the first sequence until the measurement result is 0.

4. Change angle sequence every time the result changes and accept zN as the

global result.

In conclusion, the problem of multiple copies can be solved with an adap-

tive scheme, achieving the best performance in terms of probability of correct

decision predicted by the Helstrom bound. The adaptive scheme requires local

measurement in each copy and classical communication of the outcome, in order

to optimize the next copy measurement. The scheme can be interpreted by the

means of Bayesian updating: the outcome of the measurements allows to calcu-

late the a posteriori probability of the symbol x = 0 or x = 1, that becomes the a

priori probability for the next measurement. In addition, the next measurement

can be evaluated as the optimal solution for the binary discrimination of a single

copy with these new a priori probabilities.

2.5 Revisiting the Dolinar receiver through the

multiple copy discrimination theory

The discrimination between two coherent states |α〉 and |−α〉 of a travelling

single mode harmonic oscillator presents a difficulty similar to that of collective

measurements on multiple copies. Namely, the optimal POVMs predicted by

Helstrom theory are linear combinations of |α〉 and |−α〉, but do not correspond

to any measurable observable. On the other hand, the coherent states |α〉 and

|−α〉 of duration T can be thought as sequences of shorter and weaker modes of
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duration T/N , namely,

|α〉 =
∣
∣
∣
α√
N

〉

⊗ · · · ⊗
∣
∣
∣
α√
N

〉

|−α〉 =
∣
∣
∣− α√

N

〉

⊗ · · · ⊗
∣
∣
∣− α√

N

〉 (2.62)

This interpretation of coherent states suggests that the theory of multiple

copies discrimination could be applied for the binary coherent state discrimina-

tion.

As previously seen in Sections 2.2 and 2.3, in the presence of weak coherent

states the optimal measurements can be well approximated by a displacement

operation followed by a photon counting. Then, in principle, the sequence of

measurement angles (2.61) can be reinterpreted in this context as a sequence of

displacements. Consequently, the Dolinar receiver that makes use of a continu-

ous displacement operation appears as an adaptive scheme emplyoing projective

measurements on multiple copies of a coherent state.

This interpretation has already been noticed in [31], although a complete proof

of the Dolinar receiver in such terms was not given. In the paper, as N goes to

infinity, each copy can be considered as a qubit on the two dimensional space

spanned by the number state |0〉 and |1〉, that are exactly the eigentates of the

photon counter. The displacement operation is hence interpreted as a rotation in

the space of qubits, to improved the measurement in the basis of |0〉 , |1〉.
Consider the input field ψ(t), 0 < t < T , corresponding to the coherent state

|±α〉, represented by

ψ(t) = ±ψei2πf0t, (2.63)

where f0 is the optical frequency and T is the pulse duration. The mean number

of photons arriving at the detector is given by

α2 =

∫ T

0

|ψ(t)|2dt = ψ2T. (2.64)

As the number of the copies N goes to infinity, the measurement in each copy

(2.62) of the coherent state becomes infinitesimal and the sequence of displace-

ments gives birth to a continuous time feedback scheme. The Dolinar receiver
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subtracts from the unknown input field (2.63) a time-varying field generated by

a local oscillator, producing a time variant displacement operation. The coherent

state of the displacing operation is chosen between either u0̂(t) or u1̂(t), accord-

ingly to the value of z(t), a binary signal with possible values 0̂ and 1̂, giving

the provisional decision at time t. By mimicking the behaviour of the optimal

multiple copy detection, we assume that the decision signal z(t) changes at any

photon arrival at the counter. Thus, the optical signal at the photon counter

has envelope either ±ψ − u0(t) or ±ψ − u1(t), depending on the value of z(t).

Moreover, z(T ) is assumed to be the final decision.

The mathematical problem is to choose the functions u0(t) and u1(t) that

maximize the correct detection probability

Pc = P [z(t) = x] . (2.65)

The problem can be solved by means of standard photon counting statistics.

Let us assume that x = 0, so that ψ(t) = ψei2πf0T . Then, the process z(t) can

be interpret as a telegraph process [32] alternately driven by nonhomogeneous

Poisson processes with rates

λ(t) = |ψ − u0(t)|2 ad ν(t) = |ψ − u1(t)|2. (2.66)

Following the multiple copies adaptive solution, we evaluate the time evolution

of the conditional correct detection probability p0̂|0 = P
[
z = 0̂|x = 0

]
. Define as

n(t, t+∆t) the number of photon arrivals at the counter in the interval (t, t+∆t].
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By the photon statistics,

p0̂|0(t+∆t) = P
[
z(t+∆t) = 0̂|x = 0

]
(2.67)

= P
[
z(t+∆t) = 0̂, z(t) = 0̂|x = 0

]
+ P

[
z(t+∆t) = 0̂, z(t) = 1̂|x = 0

]

= P
[
z(t+∆t) = 0̂|z(t) = 0̂, x = 0

]
P
[
z(t) = 0̂|x = 0

]

+ P
[
z(t+∆t) = 0̂|z(t) = 1̂, x = 0

]
P
[
z(t) = 1̂|x = 0

]
(2.68)

= P
[
n(t, t+∆t) = 0|z(t) = 0̂, x = 0

]
p0̂|0(t)

+ P [n(t, t+∆t) = 1|z(t) = 1, x = 0] (1− p0̂|0(t)) + o(∆t)

= (1− λ(t)∆t)p0̂|0(t) + ν(t)∆t(1− p0̂|0(t)) + o(∆t) (2.69)

= p0̂|0(t) + ν(t)∆t− (λ(t) + ν(t))∆tp0̂|0(t) + o(∆t) (2.70)

In a similar way for p1̂|1 = P
[
z = 1̂|x = 1

]
, we get

p1̂|1(t+∆t) = p1̂|1(t) + ν̃(t)∆t− (λ̃(t) + ν̃(t))∆tp1̂|1(t) (2.71)

with

λ̃(t) = | − ψ − u1(t)|2 ad ν̃(t) = | − ψ − u0(t)|2. (2.72)

From (2.70) and (2.71), we get the evolution of p0̂|0 and p1̂|1 taking the limit

as ∆t→ 0,

ṗ0̂|0 = lim
∆t→0

p0̂|0(t+∆t)− p0̂|0(t)
∆t = ν(t)− [λ(t) + ν(t)]p0̂|0(t)

ṗ1̂|1 = lim
∆t→0

p1̂|1(t+∆t)− p1̂|1(t)
∆t = ν̃(t)− [λ̃(t) + ν̃(t)]p1̂|1(t)

(2.73)

If our search is confined to symmetric solutions, i.e. u1(t) = −u0(t), we get

λ̃(t) = λ(t) and ν̃(t) = ν(t), and the correct detection probability satisfies the

differential equation

Ṗc = ṗ0̂|0p0 + ṗ1̂|1p1 = ν(t)− [λ(t) + ν(t)]Pc(t) (2.74)

= |α− u1|2 − 2(α2 + u21)Pc(t) (2.75)

On the basis of the results on multiple copy measurements we expect that, for

some choice of the envelope of the feedback signal u0(t), the provisional correct
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detection probability Pc(t) is exactly equal to the Helstrom bound applied to the

interval (0, t), namely

Pc(t) =
1

2

[

1 +
√

1− 4p0p1e−4α2t
]

(2.76)

By substituting the above expression in (2.75), and definingR(t) =
√

1− 4p0p1e−4α2t,

we get

α21−R2(t)

R(t)
= α2 + u21 + 2αu1(t)− [α2 + u21(t)][1 +R(t)] (2.77)

and after some algebra,

u1(t) =
α

R(t)
=

α
√

1− 4p0p1e−4α2t
(2.78)

coinciding indeed with the Dolinar’s solution.

2.6 A simple suboptimal receiver

The Dolinar receiver was initially proposed in 1973 [33], but due to the difficulties

to implement a very precise control of the optical–electrical loop, only recently

has been experimentally tested [34]. In fact, the coherent state to be added to

the unknown incoming optical mode must be precisely shaped in the amplitude,

following (2.78), and a high speed feedback is necessary to change the phase of

this coherent state when a photon is observed.

On the other part, the Kennedy receiver and its improved version make use

of a constant fixed displacement that leads to a much simpler implermentation.

Therefore, it is worthwhile to consider a simplified version of the Dolinar receiver

where the feedback is constrained to have a constant fixed envelope u1(t) = β.

In such a setting only a phase modulation is required, that is the phase inversion

to be applied to the displacing coherent state added when a photon is observed.

The expression (2.75) gives a first order differential equation in for Pc(t) that

can be solved for any possible function of the displacement u1(t). In particular,

substituting the a constant value u1(t) = −β for the displacement and with
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the initial condition Pc(0) = p0, we get the following final probability of correct

decision

Pc(T ) =
1

2
+

ψβ

ψ2 + β2
+

[

p0 −
1

2
− ψβ

ψ2 + β2

]

e−2(ψ2+β2)T . (2.79)

The optimal value of β can be found by numerically solving the following trascen-

dental equation, which is obtained by nulling the derivative of Pc(T ) with respect

to β:

βT (ψ2+β2)
[
(2p0 − 1)(ψ2 + β2)− 2ψβ

]
e−(ψ2+β2)T = ψ(ψ2+β2) sinh(ψ2T+β2T ).

(2.80)

In Figure 2.3 we note that the simplified Dolinar receiver slightly outperforms

the improved Kennedy receiver. In Figure 2.4 the intensity of the displacement

for different schemes is reported. It can be noted that, as confirmed by Figure 2.3,

it is for very weak coherent signals that the simplified Dolinar receiver and the

generalized Kennedy are particularly attractive since their performance approach

the Helstrom bound, while with increasing signal strength, they both perform a

displacement similar to the one applied by Kennedy’s original proposal.
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Figure 2.3: Performance comparison for different receiver schemes. In the

Helstrom limit, achieved with the Dolinar receiver. In the homodyne limit.

In the performance of the Kennedy receiver, which for |α|2 > 0.5 outperforms

the classical limit given by the homodyne detection. In the performance of the

generalized Kennedy receiver, which slightly outperforms the Kennedy receiver.

In the performance of the simplified Dolinar receiver, that outperforms all

the previous schemes except the actual Dolinar receiver.
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Figure 2.4: Intensity |β|2 for the fixed displacement D(−β) for different receiver

schemes: the Kennedy receiver, the generalized Kennedy scheme, and

the simplified Dolinar. Equal a priori probabilities p0 = p1 = 0.5 and T = 1

are considered.
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Chapter 3

Optimal Classical Encoding and

Decoding over Noisy Qubit

Channels

When the communication system includes a non–ideal quantum channel between

transmitter and receiver, the transmitted quantum states are inevitably corrupted

and distorted, and therefore the performance affected. The design of the commu-

nication system must involve considerations on the nature of the medium, and

in order to achieve the best performance a joint optimization on the transmit-

ted quantum states and on the measurement operators must be performed. In this

chapter, we deal with this optimization in the general case of non–unital channels.

3.1 Introduction

In Chapter 2 we have studied the design of quantum receivers in the binary com-

munication scenario, employing coherent states to represent the binary symbols.

We have assumed that the quantum states transmitted by Alice would travel

undisturbed to Bob, i.e. that there is an ideal channel between the two users,

such that the discrimination is limited by the non–orthogonality of the coherent

states.

55
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In this chapter, we consider the problem of transmitting classical information

over a noisy quantum channel, namely, a non–ideal channel described by a Com-

pletely Positive Trace Preserving (CPTP) map [35, 36]. In the effort of increasing

the performance of the communication system, we aim at finding optimal input

states and output measurement with respect to some performance index.

We limit our analysis to the binary case, namely where two symbol states can

be transmitted,

x = 0, 1, (3.1)

and two detection measurement are considered

x̂ = 0̂, 1̂. (3.2)

In order to evaluate the quality of a digital communication system, we use the

following functionals introduced in Section 1.4.1: symbol error probability and

channel capacity.

3.1.1 Error Probability

In the literature, the main effort in the planning of a communication system is

usually focused in the design of the receiver measurement given the constellation

of possible transmitted quantum states. This is the case of the work by Hel-

strom [22], that found the optimal measurement operators given the transmitted

quantum states and their a priori probability. In Section 2.1 we summarized the

results of his analysis.

A different approach has been undertaken by Elron and Eldar in [37], who

considered the problem of maximizing the probability of correct decision Pc when

the cardinality M of the quantum states set is given, together with the symbols a

priori probability and the Hilbert space with dimension N . Aiming at maximizing

Pc, they do not consider any limitation on the set of allowed transmitted quantum

states or measurement operator, that is equivalent to say that they assume an

ideal channel between transmitter and receiver.
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In the case of N ≥ M , the problem becomes trivial, it suffices to use a set

of orthogonal quantum states and employ the appropriate measurement projec-

tors to attain perfect detection. On the contrary, when N < M the quantum

discrimination problem becomes non trivial.

The authors in [37] first show that, given the a priori probability {px} and

the set of measurement operators {Px̂}, the optimal quantum states ρx in the

sense of maximizing Pc has its range included in the eigenspace of the maximal

eigenvalue σPx̂
of the corresponding measurement operator Px̂ (necessary and

sufficient condition). Then, they prove that it holds

Pc =
M∑

i=1

piσPi
. (3.3)

Since at the transmitter side there is the possibility to assign the symbol x = i to

the quantum state ρi with just a relabeling of the i, it is convenient to associate

the quantum states such that the order of p1 ≥ p2 ≥ . . . ≥ pM reflects the

relative order σP1
≥ σP2

≥ . . . ≥ σPM
.

If N < M , the straighforward strategy for the encoding consists in discard-

ing M − N symbols and focus the discrimination only on the remaining N . In

particular, if we consider a tight frame setup , that is a set of vectors {|µi〉}
satisfying

M∑

i=1

|µi〉〈µi| = IH, (3.4)

we can define a Tight Frame Encoding Setup (TFES) as an association between

code states and measurement operators of the type

Pi = |µi〉〈µi|
ρi = 1

〈µi|µi〉 |µi〉〈µi|
(3.5)

with {|µi〉} verifying (3.4). In [37] the authors prove that all the optimal ensem-

bles {ρi, Pi} are TFES, and in particular that the maximal probability of correct

decision

Pc =
n∑

i=1

pi (3.6)
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is obtained with N quantum states defined from a TFES, associated with the

first a priori probability in the ordering p1 ≥ p2 ≥ . . . ≥ pN ≥ . . . ≥ pM .

The conclusion of the work by Elron and Eldar is that the maximum Pc can

only be attained from a Tight Frame Encoding Setup, encoding the symbols with

higher prior probability in N orthogonal quantum pure states that are recovered

perfectly with the corresponding projector, and discarding the remaining M −N

symbols.

Although correct, the analysis is limited by the possibility to choose arbi-

trary quantum states and measurement operators in the TFES. This (implicit)

assumption is equivalent to assume an ideal channel, but when a noisy non–unital

channel is brought into the picture the quantum states at the receiver side are in

general mixed states, with more complex constraints other than just (3.4).

In this chapter we start from the understanding of these constraints given by

the channel structure, and develop a suitable reformulation of the discrimination

problem that allows to jointly optimize with respect to the transmitted quantum

states and the measurement operators.

3.1.2 Capacity

As we have seen in Chapter 1, the capacity of a channel indicates the maximal

amount of information that can be reliably sent from the transmitter to the re-

ceiver. While in the classical case, in order to find the capacity a maximization

over the input a priori symbol distribution is required, in the quantum case the

situation is more complex depending on the possible strategies that transmit-

ter and receiver can employ using product or entangled states and separable or

entangled measurements.

An issue that comes with the maximization of Holevo capacity (1.30) and

in general with the definition of the capacity is the cardinality of the symbol

alphabet. The argument of the maximization considers any values of cardinality,

both in the classical and in the quantum case.

However, in the quantum case, there is a maximal number n of measurement
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operators that can be employed in a quantum system, fixed by its dimension d,

and therefore there is a bound on the cardinality of the symbol set. This bound

was first pointed out by Davies [38], who found that

d ≤ n ≤ d2. (3.7)

The left inequality must hold for the measurement operators in order to span all

the Hilbert space H of size d, while the right inequality comes from the size of the

space of measurement operators over H applying Caratheodory’s theorem [38].

In the case of a qubit channel, the bounds (3.7) indicate that in order to

achieve the Holevo capacity it may be required to employ from 2 to 4 quantum

states. The question has been deeply investigated. In the case of unital qubit

channels, that are channels where the completely mixed state is not modified

by the channel (see Section 1.4.1 and eq. (1.13) for a formal definition), two

orthogonal quantum states suffice. In the case of more general qubit channels,

two [39], or three [40], or even four [41] non–orthogonal quantum states may

be required. In reviewing all these results, Berry [42] gives simple criteria to

determine, in the class of channels that require at most three inputs, whether only

two states suffices, and if they need to be an orthogonal pair or not. Necessary and

sufficient conditions on the channel parameters to achieve the classical capacity

with only two states were also indicated in [43].

While the previous works rely on the saturation of the Holevo capacity, we pur-

sue a different direction. If on one hand the Holevo–Schumacher–Westmoreland

theorem completely describes the capacity C(1) and in the corresponding maxi-

mization one seeks for the optimal quantum states to be transmitted, on the other

hand it fails to indicate a practical way to define and implement the receiver mea-

surement operators. In this chapter we consider the classical capacity of a binary

channel induced by a qubit channel, and we look for the optimal quantum states

and measurement operators to be employed. More precisely, we consider only

two input quantum states and two measurement operators, and evaluate the ca-

pacity for each single use of the induced binary channel. This means that during
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the transmission Alice employs product quantum states and Bob uses separable

measurement operators.

While we are bound to obtain suboptimal performances, this assumption al-

lows us to devise a constructive procedure for obtaining the optimal input states

and receiver observables. Our approach to the optimization problem allows to

develop some insight on the family of classical channels, represented by their tran-

sition probabilities, that can be obtained by properly engineering input states and

output measurements for a given quantum channel.

3.2 Partial orderings for classical binary channels

A binary memoryless channel C can be uniquely represented by its transition

probability matrix

TC =




p0|0 p0|1

p1|0 p1|1





or, more compactly, by the pair of correct transition probabilities (p1|1, p0|0).

In classical Information Theory literature, the problem of comparing discrete

channels in terms of their transition probabilities has been studied extensively

[44, 45, 46]. We are interested in the following (partial) orderings for binary

memoryless channels

Product Ordering: in the standard product ordering, a channel C ′ is dominated

by another channel C if p′0|0 ≤ p0|0 and p′1|1 ≤ p1|1.

Stochastic Degradedness [47]: a channel C ′ is stochastically degraded with

respect to another channel C if C ′ is equivalent to the cascade of C, followed

by a further channel C ′′, that is TC′ = TC′′TC.

Capability Ordering [47, 48]: a channel C ′ is said to be less capable than an-

other channel C if, for any input x, by denoting with x̂, x̂′ the corresponding

outputs from C, C ′, respectively, we have H(x; x̂′) ≤ H(x; x̂).
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Figure 3.1: Illustration of the binary channel C characterized by its correct tran-

sition probabilities p1|1 = 0.95, p0|0 = 0.65, and the sets of channels that:

are dominated by C; have higher error rate than C, with equally likely sym-

bols; are stochastically degraded with respect to C; are less capable

than C; have lower capacity than C.

By using the representation of channels as points (p1|1, p0|0) in the unit square,

Figure 3.1 shows the sets of channels that are dominated by, stochastically de-

graded with respect to, or less capable than some channel C.

The following relations hold: i) if C ′ is dominated by C in the product ordering,

then the probability of correct decision is not higher in C ′ than in C, with any

input distribution; ii) if C ′ is stochastically degraded with respect to C then C ′

is also less capable than C by the data processing inequality [49]; iii) if C ′ is

less capable than C, then C ′ has a lower capacity than C; however, all the above

inclusions are strict, as the converse statements are false, in general. Moreover,

if we restrict our attention, without loss of generality, to the channels for which

p′0|0 + p′1|1 ≥ 1, we also have: iv) if C ′ is dominated by C in the product ordering,

then C ′ is also stochastically degraded with respect to C; v) if C ′ is stochastically

degraded with respect to C, then the probability of correct decision with equally
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likely inputs is not higher in C ′ than in C.

Due to the above implications, while we aim at optimizing channels in terms

of correct decision probability or capacity, we will make use of both the prod-

uct ordering and the stochastic degradedness notions, as they are simpler to

assess in terms of the channel transition probabilities. In particular, when both

p0|0 + p1|1 ≥ 1 and p′0|0 + p′1|1 ≥ 1, it can be seen that stochastic degradedness

of a channel (p′0|0, p
′
1|1) with respect to another channel (p0|0, p1|1) is equivalent to

the following system of inequalities

{
p0|0p

′
0|1 ≥ p0|1p

′
0|0 (3.8)

p1|1p
′
1|0 ≥ p1|0p

′
1|1 (3.9)

that is to say that the point (p′1|1, p
′
0|0) lies in the triangle with vertices

{(1, 0), (0, 1), (p1|1, p0|0)}.

The following statement shows that for binary channels orthogonal projectors

are always optimal over all POVMs in terms of stochastic degradedness.

Proposition 3.1. Let {ρ0, ρ1} be any pair of input states, {P ′
0, P

′
1} be any binary

POVM, and denote by C ′ the resulting binary channel. Then there exists a pair

of orthogonal projections {P0, P1} such that, denoting by C the resulting binary

channel with the same input states, C ′ is stochastically degraded with respect to C.

Proof. Since P ′
0 + P ′

1 = I, it is easy to show that P ′
0 and P ′

1 must be simultane-

ously diagonalizable [50]. Choosing an appropriate basis we can thus write them

as:

P ′
0 = diag(qa, qb), P

′
1 = diag(1− qa, 1− qb)

with 0 ≤ qi ≤ 1, i = a, b. In the same basis, we can represent the channel output

states ρ̃x = E(ρx) as

ρ̃0 =




λ0 ∗
∗ 1− λ0



 , ρ̃1 =




λ1 ∗
∗ 1− λ1



 (3.10)
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where entries denoted by ∗ are irrelevant for our analysis. Without loss of gener-

ality we assume λ0 ≥ λ1. Moreover, we assume that qa ≥ qb, so that

p′0|0 + p′1|1 = tr (P ′
0ρ̃0) + tr (P ′

1ρ̃1)

= 1 + (qa − qb)(λ0 − λ1) ≥ 1 . (3.11)

Now, let us consider the following projectors:

P0 = diag(1, 0), P1 = diag(0, 1)

and observe that

p0|0 + p1|1 = tr (P0ρ̃0) + tr (P1ρ̃1)

= 1 + λ0 − λ1 ≥ 1 . (3.12)

In order to prove stochastic degradeness it is thus sufficient to prove that (3.8)-

(3.9) hold. In fact,

p0|0p
′
0|1 = tr (P0ρ̃0) tr (P ′

0ρ̃1) = λ0 (qaλ1 + qb(1− λ1))

= qaλ0λ1 + qbλ0 − qbλ0λ1

≥ qaλ0λ1 + qbλ1 − qbλ0λ1

= λ1 (qaλ0 + qb(1− λ0))

= tr (P0ρ̃1) tr (P ′
0ρ̃0) = p0|1p

′
0|0

where the inequality is due to λ0 ≥ λ1, and similarly

p1|1p
′
1|0 = tr (P1ρ̃1) tr (P ′

1ρ̃0)

= (1− λ1) [(1− qa)λ0 + (1− qb)(1− λ0)]

= (1− λ1)λ0(1− qa) + (1− λ0)(1− λ1)(1− qb)

≥ (1− λ0)λ1(1− qa) + (1− λ0)(1− λ1)(1− qb)

= (1− λ0) [(1− qa)λ1 + (1− qb)(1− λ1)]

= tr (P1ρ̃0) tr (P ′
1ρ̃1) = p1|0p

′
1|1

which concludes the proof. 2
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A similar conclusion, i.e. that orthogonal rank-1 measurement operators are

optimal for the classical channel capacity functional, can be obtained as a corol-

lary of the results presented in [38]. However, the approach we follow shows that

for qubit channels this is a consequence of a stronger ordering property, namely

stochastic degradeness.

A similar result holds for the probability of correct decision, as stated in the

following proposition. This result can already be found in [22], but here we

provide an alternative proof in the context of channel ordering on the base of

proposition 3.1.

Proposition 3.2. Let (ρ0, ρ1) be any pair of input states, (P ′
0, P

′
1) be any pair of

POVM, and denote by C ′ the resulting binary channel. For any input distribution

(p0, p1), there exists a pair of orthogonal projectors (P0, P1) such that, denoting

by C the resulting binary channel with the same input states, the probability of

correct decision in C is not lower than in C ′.

Proof. Consider the pair (P0, P1) derived from (P ′
0, P

′
1) as in Proposition 3.1,

yielding the transition probabilities (p1|1, p0|0). To this, add the trivial projector

pairs (IH, 0H) and (0H, IH) which yield transition probabilities (1, 0) and (0, 1),

respectively. By (3.8)-(3.9) the original (p′1|1, p
′
0|0) lie in the triangle of vertices

{(1, 0), (p1|1, p0|0), (0, 1)} and since the probability of correct decision (1.21) is

a linear function of the transition probabilities, the proof follows from the fact

that the extremal values of a linear function on a polytope are always found on

vertices. 2

By combining Propositions 3.1 and 3.2 with implications ii) and iii) about

channel orderings, it is easy to derive the following result:

Corollary 3.1. The optimal measurements for either functional are always as-

sociated to a pair of orthogonal projectors.

It was already recognized in [51] that the optimal measurement operators for

the binary discrimination problem with respect to the error probability and the
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mutual information are projectors. The authors also showed that if the output

of the channel ρ̃x are pure states, the optimal projectors for the error probability

coincide with the ones for the mutual information. In our work we prove the

optimality of projectors in the context of stochastic degradedness, which leads

to the same result, but is more general and establishes a direct link to classical

channel hierarchy. Furthermore, in the next sections we shall show that the

optimal projectors for the two functionals need not be the same, in general.

3.3 Coherence Vector Representation and Geo-

metric Picture

In order to determine the optimal probabilities, it is crucial to understand how

the channel transforms the transmitted quantum states, and then determine the

achievable transition probabilities. Hence, we first focus on the characterization

of the region of achievable transition probabilities within the unit square.

For our purpose, it is convenient to use a particular choice of basis for repre-

senting 2 × 2 complex matrices, associated to the unitary, self-adjoint operators

{I, σx, σy, σz}, where σi are the Pauli operators, also called coherence vector rep-

resentation. Input and output quantum states can then be represented as

ρx =
1

2
(IH + ~ρx · ~σ), ρ̃x =

1

2
(IH + ~τx · ~σ) (3.13)

where for any ~v ∈ R
3, ~v · ~σ is the shorthand notation for the linear combination

of Pauli matrices

~v · ~σ = ~v(1) σx + ~v(2) σy + ~v(3) σz. (3.14)

All the valid (i.e., unit-trace, positive-semidefinite) states are associated to coher-

ence vectors ~v in the unit (Bloch’s) sphere, with pure states lying on the surface

[36].

As we showed in the previous section, the optimal choice of measurements

for Bob is represented by a pair of projectors {P0, P1}. Leaving aside the trivial
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projector pairs {IH, 0H}, we consider rank-1 projectors that admit coherence

representation

Px̂ =
1

2
(IH + ~πx̂ · ~σ) (3.15)

with ~πx̂ lying on the sphere surface, where the completeness relation P0+P1 = IH

implies the constraint

~π0 = −~π1. (3.16)

The qubit channel is described by a TPCP map E acting on a two level system

H. In coherence vector representation, any TPCP map has an affine form [52]

~τx = A ~ρx +~b, (3.17)

with A being a 3×3 real matrix associated to a not necessarily strict contraction,

and~b a vector in the unit ball corresponding to the image of the completely mixed

state through the channel. Geometrically, this means that the image E of the

Bloch sphere S is an ellipsoid: if A = U S V T is the SVD decomposition of A,

S is first rotated by V , squeezed along its axes by S, rotated again by U and

then shifted by ~b. Note that, as it has been pointed out in [52], not all maps of

the form (3.17) mapping the Bloch sphere into itself yield a physical (i.e. CP)

channel. Since in our work the channel is assumed to be physical and known, this

is not a concern.

Any channel can be reduced, via change of basis for ~ρ and ~τ , to the case of a

diagonal A,

A = S = diag(a, b, c). (3.18)

In fact, we can define

~ψ = V T ~ρ (3.19)

~φ = UT~τ (3.20)

~ξ = UT~b (3.21)

so that (3.17) becomes

~φ = S ~ψ + ξ. (3.22)
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(fixed) ~π1
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~τ1

~π1 · ~τ1

~τ0

Figure 3.2: Inner product between ~π1 and ~τ1, with the Bloch sphere projected onto

the {σx, σz} plane. For a fixed ~π1, the point ~τ1 on the ellipsoid that maximizes

~π1 · ~τ1 has normal vector to the surface which is parallel to ~π1 (here depicted

unnormalized).

From ~ψ, we can get ~ρ of the original coordinate system by inversion of (3.19). In

the coordinate system where A is diagonal, the ellipsoid E has axes parallel to

those of the standard (x, y, z) coordinate system.

3.3.1 Optimization of input states for given projectors

Transition probabilities can be written in terms of the coherent representation of

states and projectors by using the inner product in R
3

p1|1 =
1 + ~π1 · ~τ1

2
,

p0|0 =
1 + ~π0 · ~τ0

2
=

1− ~π1 · ~τ0
2

.

(3.23)

If, as is often the case, a, b, c < 1 no point of the ellipsoid lies on the sphere

surface. Consequently it is not possible to have ~πx̂ · ~τx = 1, x̂, x = 0, 1 and

the region V of admissible transition probability is strictly contained in the unit

square.

Proposition 3.3. Let (~π0, ~π1) be the coherence vector representation of a pair

of orthogonal projectors. Denote with ~τ0, ~τ1 the points on the surface of E where
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the normal vector to the surface is parallel to ~π0, ~π1 respectively. Then the binary

channel associated with (~τ0, ~τ1) dominates with respect to product ordering all the

binary channel associated with other states pairs in the ellipsoid.

Proof. Consider ~π1 fixed as shown in Figure 3.2. By standard results in con-

strained optimization [53], the output vector ~τ1 that corresponds to the maximum

p1|1 must identify a point on the surface of E, with normal vector parallel to ~π1.

In fact, if we consider a plane normal to ~π1, all the points in the intersection with

the ellipsoid correspond to vectors ~τ with equal inner product with ~π1. Hence,

they give the same transition probability p1|1. Among the planes that are orthog-

onal to ~π1, the one that maximizes the inner product is thus the plane tangent

to E and closer to ~π1. Analogously for ~τ0. 2

Recalling that ~π0 = −~π1, the vector ~τ0 that maximizes ~π0 ·~τ0 is then the point

on the surface of E with normal vector −~π1, and is the “antipodal” point of ~τ1 in

the ellipsoid, that is

~τ0 + ~τ1 = 2~b. (3.24)

Note that the antipodal condition (3.24) on ~τ0, ~τ1 implies that the correspond-

ing input vectors ~ρ0, ~ρ1 are also antipodal, on the Bloch sphere, meaning that

the quantum states ρ0, ρ1 are orthogonal. Since (3.24) is a necessary condition

for the optimization, we have the following result

Corollary 3.2. If the optimal projectors {P0, P1} have rank 1, the optimal quan-

tum states to transmit for either functionals are orthogonal.

The fact that an orthogonal alphabet of quantum states is a necessary con-

dition for optimality for the classical channel capacity functional can already be

found in [39], however here we examine in depth the optimization, deriving the re-

lations between the optimal transmitted quantum state and the optimal receiver

measurements.

We now derive the explicit expression of ~τ ′0, ~τ
′
1 in an appropriate coordinate sys-

tem and evaluate the corresponding transition probabilities starting from P0, P1.
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The origin of the coordinate system is the center of S and its axes are parallel

to those of E. We can parametrize the point ~π1 on the surface of S by the angles

α ∈ [−π
2
, π
2
], β ∈ [0, 2π) and the point ~τ1 on the surface of E with θ ∈ [−π

2
, π
2
], ψ ∈

[0, 2π),

~π1 =








cosα cos β

cosα sin β

sinα







, ~τ1 =








a cos θ cosψ + bx

b cos θ sinψ + by

c sin θ + bz







. (3.25)

In order to find the desired ~τ1, in Appendix 3.A we show that setting its gradient

equal to ~π1, leads to the following conditions,

a tanψ = b tan β

tan θ
√

a2 cos2 β + b2 sin2 β = c tanα
(3.26)

and the resulting inner product is

~π1 · ~τ1 = (a cos θ cosψ + bx) cosα cos β + (b cos θ sinψ + by) cosα sin β

+ (c sin θ + bz) sinα

=

√

a2 cos2 α cos2 β + b2 cos2 α sin2 β + c2 sin2 α + ~π1 ·~b. (3.27)

Similarly, by (3.24),

~π0 · ~τ0 = −~π1 · (2~b− ~τ1) = ~π1 · ~τ1 − 2~π1 ·~b

=

√

a2 cos2 α cos2 β + b2 cos2 α sin2 β + c2 sin2 α− ~π1 ·~b . (3.28)

3.3.2 Region of achievable transition probabilities

In this section we characterize the set of transition probabilities obtained as the

vector ~π1 moves on the surface of the Bloch sphere, employing necessary condi-

tions (3.26) for the optimal quantum states (~τ0, ~τ1) out of the channel.

Let us define the set V in the unit square containing transition probabilities

pair (p′1|1, p
′
0|0) corresponding to the binary channel C ′ given by generic POVM and

generic quantum states. Region V shows evident properties of symmetry, with

respect to the bisecting line p1|1 = p0|0 and the anti-bisecting line p1|1 + p0|0 = 1.
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In fact, given a pair (p′1|1, p
′
0|0) ∈ V obtained from the POVM pair (P ′

0, P
′
1)

with the received quantum states (ρ̃0, ρ̃1), swapping the measurement operators

pair and the transmitted quantum states we obtain respectively transition prob-

abilities (1− p′1|1, 1− p′0|0) and (1− p′0|0, 1− p′1|1), that are the points symmetrical

to (p′1|1, p
′
0|0) with respect the central point (0.5, 0.5) and with respect to line

p1|1 + p0|0 = 1. Combining both swaps, we get the symmetry with respect to the

bisecting line.

Proposition 3.4. For all k ∈ [−‖~b‖, ‖~b‖], there exist a ~π1 with ~π1 ·~b = k such

that the channel C with ~π0 = −~π1 and (~τ0, ~τ1) as given by (3.26), dominates all

the channels C ′ similarly associated to any ~π′
1 such that ~π′

1 · ~b = k. Such ~π1 is

given by

~π1 = argmax
~π′
1
∈S, ~π′

1
·~b=k

max
~τ1∈E

~π′
1 · ~τ1, (3.29)

where the solution of the inner maximization problem is given by (3.26).

Proof. From (3.24), we can rewrite transition probability p0|0 (3.23) as

p0|0 =
1 + ~π1 · ~τ1

2
− ~π1 ·~b (3.30)

so that with ~π1 ·~b fixed, (3.29) maximizes both p1|1 and p0|0. 2

Figure 3.3 illustrates the relationship between the region of achievable tran-

sition probabilities when considering arbitrary POVM and transmitted states,

orthogonal projectors and optimal states, respectively.

On the basis of Propositions 3.1–3.4, all the channels that are maximal 1 with

respect to the stochastic degradedness ordering satisfy equation (3.29). We thus

propose the following procedure for an efficient evaluation of V :

1. For each value k = ~π1 · ~b, k ∈ [0, ‖~b‖2], solve (3.29). This problem is

equivalent to a quadratic problem with quadratic contraints (see Appendix

1In a set with a partial ordering, an element is said to be maximal if it does not preceed any

other element.
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Figure 3.3: Region V of admissible transition probabilities, for A =

diag([.35, .45, .20]), ~b = [.15, .20, .10]. Filled with , the set of binary channels

{p1|1, p0|0} with POVM and arbitrary quantum states. In , the set of binary

channels with rank 1 projector measurement operator and arbitrary quantum

states. Filled with , the set of binary channels with projector and optimal

quantum states by (3.26). Line is composed by the maximal binary channels.



72CHAPTER 3. OPTIMAL ENCODING AND DECODING OVER NOISY QUBIT CHANNELS

3.B), that has no closed form solution but that can be easily solved via

standard numerical methods [53].

2. Mirror the previous border with respect to the bisecting line, obtaining the

set of channels

BV ={(p1|1, p0|0) | ~π1 solution of (3.29), k ∈ [−‖~b‖2, ‖~b‖2]}, (3.31)

which contains all the maximal binary channels. Mirror BV with respect to

the anti-bisecting line by symmetry relations.

3. Connect the edges to the points (p1|1, p0|0) = (1, 0) and (p1|1, p0|0) = (0, 1),

and sweep all the region in between. The region V is depicted in Figure 3.3

filled with .

3.4 Optimization and Numerical Methods

3.4.1 Probability of correct decision

In the case of probability of correct decision, we consider the a priori symbol

probabilities p0, p1 as given. By exploiting the geometric representation of the

previous section, we can rewrite the problem so that we can obtain a solution

via standard numerical methods, as well as an insightful geometrical picture.

Combining the definition of Pc with the relation of completeness, we get

Pc = (1− p1) + tr (P1(p1ρ̃1 − p0ρ̃0)) . (3.32)

Following Helstrom [22], in order to find optimal solution for the problem of quan-

tum binary discrimination it is convenient to introduce the difference operator

∆ = p1ρ̃1 − p0ρ̃0. We now use the coherence vector representation for P1, ρ̃1, ρ̃0

to get

∆ =
1

2

(

(2p1 − 1)IH + ~d · ~σ
)

,

~d = p1~τ1 − p0~τ0 = 2p1~b− ~τ0 := (dx, dy, dz)
T
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where the antipodal condition (3.24) has been used. From (3.32), we see that

the optimal P1 is the projection on the eigenspace of ∆ associated to positive

eigenvalues. The eigenvalues of (2p1 − 1)I + ~d · σ are

λ0 =
2p1 − 1 + ‖~d‖2

2
,

λ1 =
2p1 − 1− ‖~d‖2

2
.

(3.33)

Depending upon p1, ~τ1, ~τ0, the eigenvalues may be both positive, both negative

or opposite in sign. Consequently, P1 may be respectively the identity, the null

observable on H or a rank 1 projector as in Proposition 3.2. If P1 is the identity

or the null observable, it results

Pc = max {p0, p1} (3.34)

and performing a measurement does not increase the probability of correct dis-

crimination with respect to our a priori information. In the case 2p − 1 <
√
d2x + d2y + d2z, instead, we have λ0 > 0 and λ1 < 0. We rewrite

Pc =
1

2
+ ‖p1ρ̃1 − p0ρ̃0‖1 =

(1 + ~π1 · ~d)
2

. (3.35)

This expression gives an immediate meaning to the optimal ~π1, which must be

parallel to ~d, and highlights that, in order to maximize Pc, ~d must be taken of

the maximum possible length. Hence, by (3.35) and (3.24), the optimization of

Pc results to be the quadratic problem

~dopt := argmax
~τ0∈E

‖2p1~b− ~τ0‖2 , (3.36)

where ‖ · ‖2 is the Euclidean norm. Numerical methods for convex optimization

are well known [53] and can be employed to solve the quadratic problem (3.36)

with quadratic constraints. Altogether, in the end we get

Pc = max

{

(1 + ‖~dopt‖2)
2

, p0, p1

}

. (3.37)
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Figure 3.4: Classical capacity as a function of p1|1 and p0|0.

3.4.2 Capacity

Maximization of mutual information (1.24) requires optimization over many pa-

rameters: the a priori probability distribution px, the input states ρx and the

receiver measurement Px̂. Also, due to nonlinear terms, explicit solutions are

difficult to find. Instead, numerical maximization is viable thanks to convexity

of the mutual information (see Figure 3.4).

From the geometric representation of states and measurement projectors, we

can optimize (1.24) by a search over the region V . In fact, we can split the maxi-

mization problem of (1.24) into two optimization problem: a inner maximization

with respect to the a priori probability, and an outer maximization with respect

to the transition probabilities:

Cmax = max
(p1|1,p0|0)∈V

max
px

H(x; x̂) (3.38)

The inner maximization of (3.38) has an analytic closed form solution. Con-

sider (p1|1, p0|0) as fixed, define the binary entropy

h2(x) = −x log2 x− (1− x) log2(1− x). (3.39)

with derivative

h′2(x) = log2

(
1

x
− 1

)

, (3.40)



3.4. OPTIMIZATION AND NUMERICAL METHODS 75

and inverse function of the derivative

g(x) = (h′2)
−1 =

1

2x + 1
. (3.41)

We rewrite the mutual information as

H(x; x̂) = H(x̂)−H(x̂|x)

= H(x̂)−H(x̂|x = 1) p1 −H(x̂|x = 0) p0

= h2(r)− h2(p1|1) p1 − h2(p0|0) (1− p1),

(3.42)

where r = P [x̂ = 0] = p0|0(1− p1) + (1− p1|1)p1. If we take the derivative of the

above with respect to p1, we get

dH(x; x̂)

dp1
= h′2(r) ·

dr

dp1
− h2(p1|1) + h2(p0|0)

= h′2(r)(1− p1|1 − p0|0)− h2(p1|1) + h2(p0|0).

By imposing it be equal to zero, we have:

h′2(r) =
h2(p1|1)− h2(p0|0)

1− p1|1 − p0|0
. (3.43)

Hence, by definition

r = g

(
h2(p1|1)− h2(p0|0)
1− p1|1 − p0|0

)

,

p1 =
r − p0|0

1− p1|1 − p0|0
,

(3.44)

and the classical capacity is obtained if we substitute these values in (3.42).

Outer optimization with respect to p1|1, p0|0 can be performed on the edge

of V employing standard tools from constrained optimization. In the light of

symmetry considerations, two or four optimal solutions can be found, or even

a continuous arc of optimal solutions can be obtained if these points lay on a

contour line.

Since a numerical optimization is required to solve (3.29) and hence to solve

the outer optimization, we can do the maximization altogether: for a certain
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k ∈ [0, ‖~b‖2], first solve (3.29) to find the optimal ~π1, get ~τ1 by (3.26) and ~τ0

by (3.24). From ~π1, ~τ1 and ~τ0 obtain (p1|1, p0|0) by (3.23). With these transition

probabilities, find p1 from (3.44) and get H(x; x̂). These steps need to be repeated

for a finite set of values {k} that discretizes [0, ‖~b‖2], and by direct comparison

we can get the maximum Hk(x; x̂).

Of course, since a numerical procedure is required, the discretization of the

range [0, ‖~b‖2] is necessary in order to calculate and compare the values Hk(x; x̂)

for different k. However, due to smoothness nature of the fuctional, it is assured

that it is possible to find a solution Hk̄ arbitrarly close to the true one, i.e.

∀ ǫ > 0 ∃N, k̄ > 0 s.t. |Hk̄ −Hk̂| < ǫ (3.45)

where Hk̄ is the maximal mutual information obtained on the N–step discretiza-

tion of the range, while Hk̂ is the true optimum on [0, ‖~b‖2].

3.5 Examples

The procedure explained in Section 3.3 and described in more details in Appendix

3.B, allows us to find the region of transition probabilities given a description of

the physical channel as in (3.17).

Once the numerical routine for the border calculation is set, we performed a

Monte Carlo simulation on the parameters of A and ~b, and discovered different

region shapes induced by the corresponding channels. Of course, not all possible

choices of entries of A and ~b define a physical channels, so we have to check the

necessary and sufficient conditions given in [52].

Figure 3.5 shows different kinds of shapes that can be obtained from the

channel. The corresponding A and ~b are reported in the caption. Both convex,

e.g. region 1 and region 5, and concave, e.g. regions 2,3,4, are possible, with

different types of concave border. Since there’s no analytical solution for the

borders, we cannot find a clear dependence between the ellipsoid parameters and

the shape of V . However, we can develop some intuitions and qualitative analysis

on the shape of the region V and on the position of the optimal points.
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Figure 3.5: Different shapes of the border of V . The corresponding BV are high-

lighted in thick black line. In the Table below it is reported the associated ellipsoid

parameters. Notice that case 5 presents a border parallel to the anti–bisecting

line, leading to a continuum of optimal points with respect to the error probabil-

ity.

case line A ~b

1 diag([0.3, 0.3, 0.9]) [0.3, 0, 0]

2 diag([0.2, 0.1, 0.62]) [0.3, 0, 0.15]

3 diag([0.55, 0.3, 0.3]) [0.2, 0, 0]

4 diag([0.25, 0.25, 0.2]) [0.5, 0, 0]

5 diag([0.1, 0.1, 0.1]) [0.3, 0, 0]

For some particular cases we can interpret the shape of the region in the light

of the ellipsoid parameters. For example, in the case of an ellipsoid with equal

radii (sphere), we can see that due to the symmetry, the set of the binary channel

with rank–1 projectors and arbitrary states is a stripe along the anti–bisecting

line, whose thickness depends on the radius and whose length depends on the

norm of ~b. Another peculiar case is when the channel is unital and ~b = 0. In

this case the set of the binary channel with rank–1 projectors becomes a square

centered in (0.5,0.5), with the side depending on the longest radius.
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As seen in Section 3.4, the transition probabilities maximizing the probability

of correct decision or the mutual information lie on the border of V . While

the contour curves of Pc are straight lines with slope depending on the a priori

probabilities, the contour lines of C are bent. In general, the optimal transition

probabilities differ depending upon the functional considered.

In cases 1, 3, 4, 5 depicted in Figure 3.5, either the solutions coincide, or

at least a pair of coinciding solutions exists. Notice that whenever the region V
presents a border parallel to the anti–bisecting line (as in case 5), the optimization

of error probability with equally likely inputs leads to a continuum of solutions

on the segment of the border.

Case 2 is clarified in Figure 3.6, where three different regions V (in solid,

dashed and dotted line) are depicted, and the optimal points for the different

functionals exhibit significant difference. In the background (in thin grey solid

lines) the countour lines of the mutual information are drawn to illustrate why

the optimal points do not coincide: the local curvature of the border of V is

lower than the curvature of the mutual information contour line. In doing this

comparison, we consider an equal a priori probability for the probability of correct

decision.

This particular situation can arise for both concave and convex regions. How-

ever, a convex region with the point of maximal classical capacity along the

bisecting line has the same point of maximal probability of correct decision with

equal a priori probability.
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Figure 3.6: Examples of regions V where the point of maximal mutual information

does not coincides with the point of maximal probability of correct decision .

In the background, contour lines of mutual information maximized with respect

to px.

line A ~b p1

diag([0.14, 0.07, 0.19]) [0.46, 0.74, 0.03] 0.57

diag([0.34, 0.24, 0.45]) [-0.42, -0.27, -0.26] 0.55

diag([0.11, 0.64, 0.07]) [-0.24, -0.15, 0.45] 0.54
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Appendix

3.A Proof of the necessary condition for optimal-

ity

Consider the coherence vector representation for the quantum states in input

and output of the channel ~ρ, ~τ and for the measurement operators ~π. The affine

relation between ~ρ and ~τ ,

~τ = A~ρ+~b, (3.46)

maps the Bloch ball surface associated to

~ρ T ~ρ = 1 (3.47)

into the ellipsoide E with equation

(~τ −~b)TA−TA−1(~τ −~b) = 1. (3.48)

The (unnormalized) normal vector to the surface of E in the point located by

~τ can be written as

~∇~τ = 2A−TA−1(~τ −~b), ~τ ∈ E. (3.49)

In order to find the point in the ellipsoid with normal vector equal to ~π, we set

A−TA−1(~τ −~b)
‖A−TA−1(~τ −~b)‖

= ~π. (3.50)

After substituting (3.46), the expression becomes

A−T ~ρ

‖A−T ~ρ‖ = ~π. (3.51)

81
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In particular, by inversion of (3.51) we obtain the following relation

~ρ T ~ρ = 1 = ‖~ρ‖2 = ‖A−T ~ρ‖2‖AT~π‖2, (3.52)

and hence

~ρ = ‖A−T ~ρ‖AT~π =
AT~π

‖AT~π‖ , (3.53)

which is equivalent to the necessary condition (3.26) between the projector ~π1

and the quantum state ~τ1.

In addition, if we evaluate the inner product we get

~π · ~τ = ~π · (A~ρ+~b) = ~π · A~ρ+ ~π ·~b (3.54)

and using (3.51) and (3.52), we get

~π · A~ρ = ~ρ TA−1A~ρ

‖A−T ~ρ‖ =
‖~ρ‖2

‖A−T ~ρ‖ = ‖AT~π‖. (3.55)

We finally obtain (3.27), that is

~π · ~τ = ‖AT~π‖+ ~π ·~b. (3.56)

3.B Quadratic Optimization Problems with Quadratic

Constraints

Consider the problem (3.29), and define the cost function

f := ~π1 · (~τ1 −~b) = ~π1 ·∆~τ1 (3.57)

and the constraints

~τ1 ∈ E, (3.58)

~π1 ∈ S, (3.59)

~π1 ·~b = k, (3.60)

for k ∈
[

0, ‖~b‖2
]

. According to definitions (3.25), the maximization of (3.57) with

constraints (3.58)-(3.60) requires an optimization with respect to four variables,
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i.e. α, β, θ and ψ. As already pointed out previously in Section 3.3, the constraint

(3.58) and the geometric interpretation of the optimization allow us to obtain the

necessary conditions (3.26), so that we can substitute θ, ψ in terms of α, β, to

get an expression of the cost function f similar to (3.27), i.e.

f̃ :=

√

a2 cos2 α cos2 β + b2 cos2 α sin2 β + c2 sin2 α. (3.61)

Alternatively, if we substitute α, β in terms of θ, ψ we obtain

f̃ ′ :=
abc

√

a2b2 sin2 θ + b2c2 cos2 θ cos2 ψ + a2c2 cos2 θ sin2 ψ
. (3.62)

Depending on the choice of the variables, the optimization problem becomes the

maximization or minimization of the square root term in f̃ or f̃ ′. Also, we can

simplify the formulation using f̃ 2 or (f̃ ′)2 as functional, in order to get rid of the

square root term.

The constraint (3.59), that can be rewritten as

~π T
1 ~π1 = 1, (3.63)

has intersection with the plane (3.60) that defines a circle on S as region of

optimization.

If we consider the points defined by the variables α, β in (3.25), the cost

function f̃ can be interpret as the norm of vector ~π1 in a non-normal coordinate

system, and the problem

(~π1)max(k) = argmax
~π T

1
~π1=1, ~π1·~b=k

f̃ (3.64)

becomes a quadratic problem with quadratic constraints. The same type of prob-

lem can be obtained if we consider the square root term of f̃ ′ to be minimized.

We develop a reformulation of (3.64) into the problem of finding the farthest

point of an ellipse from a given point. We test this approach comparing it with

other numerical optimization tecniques, such as a “brute force” algorithm, that

discretizes the ellipse and look for the best ~π1 in the discretization, and general nu-

merical constrained optimization, that includes the constraints in the functional

and finds the maximum with numerical iterative methods.



84CHAPTER 3. OPTIMAL ENCODING AND DECODING OVER NOISY QUBIT CHANNELS

First, consider problem (3.64) not as function of variables α, β but as function

of the coordinates system ~π1 = [x, y, z]T defined by (3.25). The cost function of

the problem becomes

f̃ 2 = a2x2 + b2y2 + c2z2, (3.65)

with constraints for a given k ∈
[

0, ‖~b‖2
]

x2 + y2 + z2 = 1, (3.66)

x bx + y by + z bz = k. (3.67)

The coordinates need first to be normalized 2, with







x

y

z







=








1
a

0 0

0 1
b

0

0 0 1
c















x1

y1

z1







:= H1








x1

y1

z1







, (3.68)

and substitute z1 by the constraint (3.67):







x1

y1

z1







=








1 0 0

0 1 0

− cbx
abz

− cby
bbz

0











x2

y2



+








0

0

ck
bz








:= H2




x2

y2



+ t2. (3.69)

We then express the cost f̃ 2 and (3.66) as a function of x2, y2. Next, with the

change of variables



x2

y2



 =
1

√
b2b2x + a2b2y




bbx aby

aby −bbx








x3

y3



 := H3




x3

y3



 , (3.70)

and



x3

y3



 =





ab
R

0

0 1
bz








x4

y4



+





kabc2
√
b2b2

x
+a2b2

y

R2

0





:= H4




x4

y4



+ t4, (3.71)

2In the following, the subscript of variables refers to the step in the substitutions.
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where R =
√
a2b2b2z + c2b2b2x + c2a2b2y, we obtain a quadratic functional in the

canonical form:

f̃ 2 = x2
3 + y2

3 . (3.72)

The substitutions (3.68)-(3.71) applied to the constraint (3.66) give a shifted and

rotated ellipse.

We can rotate the coordinate system so that the ellipse has axes parallel to

the system’s with the substitution



x4

y4



 = H5




x5

y5



 , (3.73)

where matrix H5 is:

H5 :=







v2−v(b2
x
+b2

y
)c2+(b2b2

x
−a2b2

y
)(b2−a2)b2

z
+
√
S

n1

2bxbybz(b2−a2)
√
b2b2

x
+a2b2

y

n2

2bxbybz(b2−a2)
√
b2b2

x
+a2b2

y

n1

−v2+v(b2
x
+b2

y
)c2−(b2b2

x
−a2b2

y
)(b2−a2)b2

z
+
√
S

n2







(3.74)

where
√
S =

√

(b2 − c2)b2x + (a2 − c2)b2y + (a2 − b2)b2z − 4b2xb
2
z(a

2 − b2)(b2 − c2),

v = b2b2x + a2b2y and n1, n2 are coefficients introduced to normalize the first

and second column of H5, respectively. Furthermore, define

A =
(a2 + b2)b2z + (b2 + c2)b2x + (a2 + c2)b2y +

√
S

2R2
, (3.75a)

B = 0, (3.75b)

C =
(a2 + b2)b2z + (b2 + c2)b2x + (a2 + c2)b2y −

√
S

2R2
, (3.75c)

D =
−2k(b2 − a2)bxbybzv

n1R2

(

b2z(a
2b2 − c2(a2 + b2)) +R2 − c4(b2x + b2y)− c2

√
S
)

,

(3.75d)

E =
−2k(b2 − a2)bxbybzv

n2R2

(

b2z(a
2b2 − c2(a2 + b2)) +R2 − c4(b2x + b2y) + c2

√
S
)

,

(3.75e)

F = b2z

(
k2(a4b4b2z + b4c4b2x + a4c4b2y)

R4
− 1

)

. (3.75f)

With this substitutions, the constraint (3.66) is rewritten in the quadratic form

A x2
5 +B x5y5 + C y2

5 +D x5 + E y5 + F = 0, (3.76)
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with coefficients in (3.75a)-(3.75f). The center and radii of the ellipse result to be

xE = − D

2A
, (3.77)

yE = − E

2C
, (3.78)

rx =

√

D2C + E2A− 4ACF

4A2C
, (3.79)

ry =

√

D2C + E2A− 4ACF

4AC2
. (3.80)

The problem (3.64) becomes

argmax
Ax2

5
+Bx5y5+Cy2

5
+Dx5+Ey5+F=0

x2
5 + y2

5 (3.81)

that means to find the point on the ellipse described in (3.76) that is farthest

form the origin (0,0). Problem (3.81) still require a numerical algorithm, but this

formulation has been tested with respect to other methods mentioned above and

results to be the most accurate.

The final vector ~π1 can be calculated reverting the changes of variables,




x2

y2



 = H3



H4H5




x5

y5



+ t4



 , (3.82)

~π1 =








x

y

z







= H1







H2








x2

y2

0







+ t2







. (3.83)



Chapter 4

Quantum Receivers for Pulse

Position Modulation

Several modulation formats have been proposed to limit the distorting action of

the channel on the transmitted signals. Modulation is the operation of encoding

the symbol value to be transmitted into a property of the quantum states, such

as phase, amplitude or polarization. In this Chapter we consider Pulse Position

Modulation, where the transmitted symbol is encoded into the temporal position

of a coherent state in the symbol time interval. Existing receiver schemes are

presented as well as the theoretical limit of the error probability, and in the end

an adaptive receiver scheme is proposed.

4.1 Introduction to Pulse Position Modulation

Optical Coherent Communications employ the properties of the coherent state

of light as carriers for the messages sent from the transmitter to the receiver.

Polarization, amplitude and phase are the main properties to be modulate in order

to encode the symbol to be transmitted. Differently, Pulse Position Modulation

(PPM) encodes the information to be transmitted in the temporal position of a

pulse within the symbol time length.

In the classical optical implementation of the Pulse Position Modulation, the

87
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x =M

t = 0t = T
M t = T

x = 3

x = 2

x = 1

Figure 4.1: Classical representation of the PPM optical signals, with a laser pulse

transmitted in the position corresponding to the symbol. T is the symbol time

interval, and M = 4 the cardinality of the modulation.

symbol interval is virtually divided into M slots, with M the cardinality of the

modulation. Each slot corresponds to a position, enumerated from 1 to M . A

laser pulse is sent during the time interval in one of the possible positions identified

by the symbol x ∈ {1, 2, . . . ,M} to be transmitted.

Pulse Position Modulation can also be interpreted as an intensity modulation,

whose building block is the On Off Keying defined in 2.19. PPM is a coded version

of OOK, where only the codewords with one “On” signal are considered, as shown

in Figure 4.1. As a consequence, it is easily implemented with a pulse generator

that is turned on or off according to whether the pulse is transmitted or not in

the current slot.

This modulation is widely adopted for optical communication, and it is a

candidate for satellite and deep space communications, because it requires low

average power and attains reasonably high information efficiencies.

Quantum Pulse Position Modulation captures the idea of sequencing empty

slots and pulses in order to define the quantum state associated with the symbol.

We need to consider a Hilbert Space H0 for each slot, and in this Hilbert Space

we define two possible quantum states ρ0,i and ρ1,i corresponding to the classical

empty slot and pulse. Hence, the quantum state corresponding to the signal x
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belongs in the composite Hilbert space H, given by

H = H0 ⊗ H0 ⊗ · · · ⊗ H0 = H⊗M
0 . (4.1)

It H0 has dimension n, H has size nM . The association between symbol and

transmitted quantum state is therefore

x = i, i ∈ {1, . . . ,M} ⇐⇒ ρi = ρi,1 ⊗ ρi,2 ⊗ · · · ⊗ ρi,M (4.2)

with

ρi,j =







ρ0,i if i 6= j

ρ1,i if i = j

(4.3)

A straightforward implementation of Quantum Pulse Position Modulation

from classic optics consider coherent states, and associates ρ0,i = |γ0,i〉〈γ0,i| to the

vacuum state |0〉〈0| and ρ1,i = |γ1,i〉〈γ1,i| with the coherent state |α〉〈α|, α 6= 0.

For example, in a 4-PPM with this implementation the states associated with

symbols are

x = 1 ⇐⇒ |γ0〉 = |α〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉
x = 2 ⇐⇒ |γ1〉 = |0〉 ⊗ |α〉 ⊗ |0〉 ⊗ |0〉
x = 3 ⇐⇒ |γ2〉 = |0〉 ⊗ |0〉 ⊗ |α〉 ⊗ |0〉
x = 4 ⇐⇒ |γ3〉 = |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |α〉

(4.4)

The inner product of two states, each generated by the tensor product of M com-

ponent states, is given by the product of the M inner products of the component

states, that is,

〈γi,j|γl,k〉 =







〈0|0〉 = 1 i = l = 0

〈0|α〉 = e−
|α|2

2 i 6= l

(4.5)

and hence results

χ = 〈γi|γj〉 = 〈α|0〉〈0|0〉〈0|α〉〈0|0〉 = e−
|α|2

2 · 1 · e− |α|2

2 · 1 = e−|α|2 (4.6)

In the following Sections, we consider the problem of discrimination between

the M -PPM signals defined with the coherent states, as in Eq. (4.4) for the

case M = 4, assuming equal a priori probability px = 1
M

. The problem can be
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framed in the Communication Scenario depicted in Figure 1.4, considering the

association (4.4) between symbol and transmitted states and assuming an ideal

channel.

The figure of merit for the performances of the discrimination are given by

the error probability (or equivalently by the probability of correct decision) that

can be written as

Pc =
M∑

i=1

P [x̂ = i, x = i] =
1

M

M∑

i=1

P [x̂ = i|x = i] , (4.7)

Pe = 1− Pc. (4.8)

4.2 Optimal Performance

In this Section we review the optimal performances in term of error probability

for PPM quantum states, as predicted by the quantum discrimination theory.

4.2.1 Geometrically Uniform Symmetry

A constellation of states with a symmetry property simplify the study of its per-

formance and the search for optimal measurements. In particular, in many mod-

ulation format the Geometrically Uniform Symmetry (GUS) can been observed

that we now define, that is also verified in PPM.

Definition 4.1. A set of M pure states

{|γ1〉 , |γ2〉 , |γ3〉 , . . . , |γM〉} (4.9)

verifies the property of Geometrically Uniform Symmetry if there exists a unitary

operator, called Symmetry Operator, such that all the states |γi〉 are obtained from

a single reference state |γM〉 as

|γi〉 = Si |γM〉 , i = 1, 2, . . . ,M (4.10)

The Symmetry Operator is necessarily an M-th root of the identity operator, that

is, it holds

SM = IH. (4.11)
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By the definition of Quantum PPM, the presence of an underlying symmetry

is evident. In fact, the state |γi+1〉 is obtained from |γi〉 through a shift of each

kronecker factor by one position to the right (modulo M). However, to translate

this concept into a symmetric operator is a non trivial problem since S is not

separable into a tensor product of operators.

Cariolaro and Pierobon [54] have found the expression of such operator.

Proposition 4.1. The matrix definition of the Symmetry Operator defining the

PPM constellation is given by

S =
M∑

k=1

eh(k)⊗ I
(n)
H ⊗ eTh (k) =

M∑

k=1

n∑

j=1

(eh(k)⊗ en(j))(en(j)⊗ eh(k))
T , (4.12)

where el(k) is the the k-th element of the canonical basis1 in a space of size l,

h = nM−1, and I(n) is the identity matrix of order n.

The proof is beyond the scope of this Chapter, the interested reader can find

the details in [54, 25].

The symmetry operator generates a shift to the right

S(ρi,1 ⊗ ·ρi,M−1)⊗ ρi,MS
−1 = ρi,M ⊗ (ρi,1 ⊗ ·ρi,M−1), (4.13)

that in the case of pure states becomes

S (|γi,1〉 ⊗ · |γi,M−1〉 ⊗ |γi,M〉) = |γi,M〉 ⊗ |γi,1〉 ⊗ · |γi,M−1〉 , (4.14)

Applying (4.14) iteratively, we get

|γi〉 = S |γi−1〉 = S (S |γi−2〉) = Si |γM〉 . (4.15)

1The notation el(k) represents a column vector of length l, whose elements are all 0’s with

the exception of a 1 in the k-th position.
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As an example, the symmetry operator for 4-PPM takes the form

S =















































1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1















































(4.16)

4.2.2 Least Square Measurements

In order to introduce the least square measurements, we pose a slightly different

problem rather then the minimization of the error probability.

Consider the case where the transmitted quantum states are pure |γi〉 ∈ H′,

|γi〉 ∈ {|γ1〉 , |γ1〉 , . . . , |γM〉}, (4.17)

and the random variable x has a uniform distribution

px =
1

M
, x ∈ {1, . . . ,M}. (4.18)

We consider the following problem statement
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Problem 4.1. Find the set of operator measurements {|πi〉〈πi|, i = 1, . . . ,M}
that satisfies the completeness relation (1.15) and minimizes

E =
M∑

i=1

〈ei|ei〉, |ei〉 = γ[i]− |πi〉 (4.19)

This problem is known as Least Squared Error (LSE), and differs from the

problem statement in Section 1 for the figure of merit to minimize.

Intuitively, the LSE criterium look for measurement operators that are “close”

to the state transmitted. As we will shortly see, the optimal solution for this

problem coincides with the optimal solution when the figure of merit to optimize

is the error probability for a communication system in which pure states with

geometric uniform symmetry are employed with equal a priori probability.

The statement of the problem 4.1 considers the use of rank-1 measurement

projectors |πi〉〈πi|. This assumption is motivated by the following theorem.

Proposition 4.2 (Kennedy’s Theorem [23, 25]). In the discrimination prob-

lem between M possible pure states, the optimal measurement operators that min-

imize the error probability are rank-1 projectors,

Pk = |πk〉〈πk|, k = 1, 2, . . . ,M (4.20)

and the measurement vectors |πk〉 are orthonormal.

The assumption can be further refined considering the subspace spanned by

the quantum states {|γi〉}

U = span (|γ1〉 , |γ2〉 , . . . , |γM〉) ⊆ H′. (4.21)

In the case of a set of M linearly independent quantum states (not necessarily

orthonormal), the dimension r of U is

r = dim U ≤M ≤ n = dim H′ (4.22)

and it is not restrictive to suppose that the measurement vectors |πk〉 lies in the

space U , since any other component of |πk〉 that belongs to the complementary

space U⊥ gives zero contribution to the outcomes probability.
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Therefore, we see that both the quantum states |γi〉 and the measurement

vectors |πk〉 lies in the same space U . As a consequence, we can replace the

constraint of the completeness relation (1.15) with the constraint

M∑

k=1

|πk〉〈πk| = PU (4.23)

where PU is the projector of the original Hilbert Space H′ onto U .

In addition, since both the sets {|γi〉}i and {|πl〉}k generate U , we can write

the elements of one set as linear combination of elements of the other

|πk〉 =
M∑

i=1

ak,i |γi〉 (4.24)

|γi〉 =
M∑

k=1

bi,k |πk〉 (4.25)

with complex coefficients ak,i and bi,k in general.

Using a vector representation for the pure states, we can define the state

matrix as the matrix whose columns are the transmitted quantum states

Γ = [|γ1〉 | |γ2〉 | . . . | |γM〉] . (4.26)

This matrix is related to Gram’s matrix G and the Gram’s operator T by the

definition

G = ΓHΓ =








〈γ1|γ1〉 · · · 〈γ1|γM〉
...

. . .
...

〈γM |γ1〉 · · · 〈γM |γM〉








(4.27)

T =
M∑

i=1

|γi〉〈γi| (4.28)

Note that the size of G is M ×M , while the size of T is n × n, with n the size

of the Hilbert Space H of |γi〉.
If we consider the singular value decomposition (SVD) of the state matrix Γ,

Γ = USVH (4.29)
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it is easy to find the relation between G and T. The matrix U is an n × n

orthonormal matrix that constitutes a basis Hilbert Space H′. The matrix S is a

n×M rectangular matrix with rank r ≤ M ≤ n and zero off-diagonal elements.

The non-zero diagonal elements σi are called singular values of Γ. Finally, the

matrix V is a M ×M orthonormal matrix composed by the kernel of Γ and its

orthogonal space.

If we rearrange the columns of the matrices such that the first diagonal ele-

ments [S]i,i are the singular values σi, we can recognise

• the range space of Γ, that is the subspace U , is generated by the first r

columns of U, indicated by Ur

U = span {Γ} = span {u1, u2, . . . , ur} = span{Ur} (4.30)

• the null space of Γ is generated by the last M − r columns of V, and hence

ker(Γ) = span {vr+1, . . . , vM}, ker⊥(Γ) = span {v1, . . . , vr} = spanVr

(4.31)

• if we eliminate the unnecessary columns, we can decompose Γ into its re-

duced SVD

Γ = UrSrV
H
r (4.32)

where Ur, Sr, Vr has dimensions n× r, r × r, r ×M .

As a consequence of this decomposition, we can hence rewrite G and T as

G = ΓHΓ = VSHUHUSVH = VS2VH (4.33)

T = ΓΓH = USVHVSHUH = US2UH (4.34)

or, using the (4.32)

G = ΓHΓ = VrS
H
r UH

r UrSrV
H
r = VrS

2
rV

H
r (4.35)

T = ΓΓH = UrSrV
H
r VrS

H
r UH

r = UrS
2
rU

H
r (4.36)
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The matrices G and T have the same set of nonzero eigenvalues, v2i , same rank,

but different size, range and null space.

In the same way of (4.26), we can define the measurement matrix, i.e. the

matrix with the measurement vector as column

M = [|π1〉 | |π2〉 | . . . | |πM〉] (4.37)

We can hence rewrite the LSE criterium as

E = tr
(
(Γ− M)(Γ− M)H

)
(4.38)

and the constraints of the completeness relation as

MMH = IH (4.39)

The solutions to the problem (4.1) are called Least Squared Measurement or

Squared Root Measurement, and are defined by the following proposition

Proposition 4.3 (Square Root Measurement, [55, 56]). The measurement matrix

M that minimizes the quadratic error (4.38) with the constraint of the complete-

ness relation (4.39) is given by

Mopt =
M∑

k=1

|ui〉 〈vi| = UrV
H
r , (4.40)

where UM , VM are the matrices of the Singular Value Decomposition of Γ. In

addition, the minimum quadratic error is evaluated as

E =
M∑

i=1

(1− σi)
2. (4.41)

For a proof of the proposition, see [55, 56, 25].

As corollary of this proposition, we have that the optimal measurement matrix

Mopt = UrV
H
r can be calculated with the following expressions

Mopt = Γ(ΓHΓ)−1/2 = ΓG−1/2, (4.42)

Mopt = (ΓΓH)−1/2Γ = T−1/2Γ. (4.43)
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that uses the inverse of the square root of G and T, calculated as

G−1/2 = VrS
−1
r VH

r , T−1/2 = UrS
−1
r UH

r . (4.44)

By (4.44), different methods have been proposed to evaluate the optimal mea-

surement matrix Mopt, usig the SVD of the state matrix or calculating the inverse

of the square root of T or G. For a detailed description of the methods we refer

to [25].

We can compute the transition probability directly from G In fact, by defini-

tion the transition probabilities are given by

pi,j =
∣
∣
∣

[
MHΓ

]

i,j

∣
∣
∣

2

, (4.45)

where the matrix MHΓ can be evaluated from

MHΓ = (ΓG−1/2)HΓ = (Γ(ΓHΓ)−1/2)HΓ = (ΓHΓ)−1/2ΓHΓ = (ΓHΓ)1/2 = G1/2

(4.46)

resulting in

pi,j =
∣
∣
∣G

1/2
i,j

∣
∣
∣

2

. (4.47)

This method is also referred to Squared Root Measurement, because it involves

the use of the square root of matrix G.

4.2.3 Least Square Measurements and Geometric Uniform

Symmetry

In the presence of a set of transmitted quantum states with Geometrically Uni-

form symmetry, the evaluation of the optimal measurement operators can be

simplified. In fact, the GUS symmetry is reflected in the measurement operators,

as indicated by the next proposition.

Proposition 4.4 (Eldar and Forney, [56, 25]). If the set of transmitted quan-

tum states has the property of Geometrically Uniform Symmetry, it is not restric-

tive to suppose that the optimal measurement operator have the same symmetry,

that is

Pk = Sk PM S−k, k = 1, . . . , M. (4.48)
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In the case that the measurement operator are just rank-1 projectors, the

Geometrically Uniform Symmetry becomes

|πk〉 = Sk |πM〉 , k = 1, 2, . . . , M. (4.49)

In Section 4.2.2 we have seen that we can obtain the performance and the

optimal measurement operators for the LSE problem given the state matrix and

the Gram matrix. When the set of quantum states possesses the property of

GUS, the Gram matrix G has a particular structure

Gi,j = 〈γi|γj〉 = 〈γM |S−iSj|γM〉 = 〈γM |Sj−i|γM〉 = gj−i (mod M) (4.50)

and hence the entry Gi,j depends only on the difference j−i (mod M). A matrix

with such a structure is called circulant, and is completely specified by its first

row [g0, g1, . . . , gM−1]. For example, if M = 4 we have the following matrix

G =











g0 g1 g2 g3

g3 g0 g1 g2

g2 g3 g0 g1

g1 g2 g3 g0











(4.51)

For circulant matrix, the eigenvectors |wp〉 are the column of the matrix of the

Discrete Fourier Transform with the same size

|wp〉 =
[
1 w−p w−2p . . . w−p(M−1)

]T
, p = 0, 1, . . . ,M − 1 (4.52)

with w = ei
2π

M , such that

G = WSWH =
M−1∑

p=0

λp|wp〉〈wp| (4.53)

with

W =
1√
M











1 1 1 . . . 1

1 w−1 w−2 w−2(M−1)

...
...

. . .
...

1 w−(M−1) w−2(M−1) . . . w−(M−1)(M−1)











(4.54)
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The eigenvalues corresponging to |wp〉 are

λp = g0 + g1 w
p + g2 w

2p + g3 w
3p + · · ·+ gM−1 w

M−1 =
M−1∑

q=0

gqw
−pq (4.55)

From (4.53), it is easy to find the square root of G

G±1/2 =
M−1∑

p=0

λ
± 1

2
p |wp〉〈wp| (4.56)

and hence

(G±1/2)i,j =
1

M

M−1∑

p=0

λ
± 1

2
p w−p(i−j) (4.57)

Following (4.47), we can calculate the transition probabilities

pj|i =
∣
∣
∣
1

M

M−1∑

p=0

λ
± 1

2
p w−p(i−j)

∣
∣
∣

2

, i, j = 1, 2, . . . , M (4.58)

and in particular

pi|i =
∣
∣
∣
1

M

M−1∑

p=0

λ
1

2
p

∣
∣
∣

2

(4.59)

that gives the probability of correct decision and the error probability

Pc =
1

M

M∑

i=1

pi|i =
1

M2

∣
∣
∣

M−1∑

p=0

λ
1

2
p

∣
∣
∣

2

, (4.60)

Pe = 1− Pc = 1− 1

M2

∣
∣
∣

M−1∑

p=0

λ
1

2
p

∣
∣
∣

2

. (4.61)

4.2.4 Theoretical Limit Performances of PPM

When this method is applied to the Pulse Position Modulation, we easily manage

to evaluate its performances and find the optimal measurement operator. In the

case of PPM, define as in (4.110) the inner product

χ = 〈γi|γj〉, i 6= j (4.62)

such that the Gram’s matrix becomes

G =











1 χ χ . . . χ

χ 1 χ . . . χ
...

. . .

χ χ χ . . . 1











(4.63)
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The matrix (4.63) has eigenvalues

λp =
M−1∑

q=0

gqw
−pq = 1 + χ

M−1∑

q=1

w−pq (4.64)

and using the orthogonality condition

M−1∑

q=0

w−pq =







M, if p = 0

0, if p 6= 0

(4.65)

we get

λp =







1 + (M − 1)χ, p = 0

1− χ, p 6= 0

(4.66)

The transition probabilities can be evaluated as

pj|i ==
1

M2

[
M−1∑

p=0

λ
1

2
pw

−p(i−j)
]2

=
1

M2

[

λ
1

2

0 + λ
1

2

1

M−1∑

p=1

w−p(i−j)
]2

(4.67)

that depending on the values of i, j are calculated as

pj|i =







1
M2

(

λ
1

2 − λ
1

2

1

)2

i 6= j

1
M2

(

λ
1

2 + (M − 1)λ
1

2

1

)2

i = j

(4.68)

Finally, we can evaluated the probability of correct decision by (4.60), obtaining

the theoretical quantum limit

P (theoretical)
c =

1

M2

(√

1 + (M − 1)χ+ (M − 1)
√

1− χ
)2

, (4.69)

P (theoretical)
e =

M − 1

M2

(√

1 + (M − 1)χ−
√

1− χ
)2

. (4.70)

4.3 Existing Receiver Schemes for PPM

In this Section, we review the existing receiver schemes for PPM, in particular a

class of receivers called “conditionally nulling receivers”, proposed by Dolinar in

1982 in [57], that combine an adaptive nulling scheme with a energy photodetec-

tion, and approaching very closely the error probability limit.



4.3. EXISTING RECEIVER SCHEMES FOR PPM 101

4.3.1 Classical Receivers

In classical optical communications, the Pulse Position Modulation is described

as a coded version of the binary OOK modulation. Considering all the possible

binary sequences with digits |α〉 and |0〉 of length M , PPM is the modulation

associated to a codebook composed by word with only one state |α〉.
The classical receiver revises these considerations, and it implements an energy

photodetection in each slot k, looking for any photons, that are the signature of

the quantum states |α〉. Since this receiver requires only photon counting, it is

also referred to as Direct Detection (DD).

In the assumptions of ideal channel and ideal photon counting, that is with no

dark counts, no dead time and unit efficiency, if at least one photon is observed

in a slot the receiver estimates the corresponding symbol. On the contrary, if

no photons are observed in the whole symbol time interval, the receiver outputs

a symbol value at random. In the following we see how this estimation scheme

is the result of an optimization on the outcome sequences with the Maximum a

Posteriori (MAP) criterium.

More precisely, in each slot k a measurement is performed associated with the

outcome zk, with zk = 0̂ indicating the empty slot and outcome zk = 1̂ associated

with the presence of at least one photon. The POVM of this measurement are

Π0̂ = |0〉〈0|, Π1̂ = I − Π0. (4.71)

Usually, the outcome zk = 1̂ is associated to a “click” in the detector for each

observed photons. The transition probabilities read

P
[
zk = 0̂| |γk,i〉 = |0〉

]
= 1, (4.72)

P
[
zk = 0̂| |γk,i〉 = |α〉

]
= e−|α|2 , (4.73)

P
[
zk = 1̂| |γk,i〉 = |α〉

]
= 1− e−|α|2 . (4.74)

Note that the transition probability

P
[
zk = 1̂| |γk,i〉 = |0〉

]
(4.75)
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equals zero as the corresponding transition is not allowed. If we take into ac-

count some imperfections of the photon detection, such as the Dark Counts, this

transiton probability may be allowed.

The projectors associated with the measurement on the whole time symbols

are tensor product of (4.71). Consider the string of length M , z̄M , with digits

zk ∈ {0̂, 1̂}, k ∈ {1, . . . ,M}. The projector associated to z̄M has the tensor

product of (4.71) in the order that the letters appear in the string,

Πz̄M = Π[0̂1̂1̂...0̂1̂0̂] = Π0̂ ⊗ Π1̂ ⊗ Π1̂ ⊗ · · · ⊗ Π0̂ ⊗ Π1̂ ⊗ Π0̂ (4.76)

For example, for M = 4, some of the measurement projectors are

Π[0̂0̂0̂0̂] = Π0̂ ⊗ Π0̂ ⊗ Π0̂ ⊗ Π0̂

Π[0̂0̂0̂1̂] = Π0̂ ⊗ Π0̂ ⊗ Π0̂ ⊗ Π1̂

Π[0̂0̂1̂0̂] = Π0̂ ⊗ Π0̂ ⊗ Π1̂ ⊗ Π0̂

Π[0̂0̂1̂1̂] = Π0̂ ⊗ Π0̂ ⊗ Π1̂ ⊗ Π1̂

...

(4.77)

We can calculate the transition probabilities between the transmitted and the

estimated symbols from the transition probabilities slot by slot (4.73).

Firstly, all symbols can give the outcome z =
[
0̂0̂0̂ . . . 0̂

]
if the state |γk,i〉 = |α〉

gives outcome 0̂ (as well as all the other slot), with the probability

P
[
z = [0̂0̂0̂ · · · 0̂]|x = i

]
= (4.78)

= (〈0|〈0| · · · 〈α|〈0|) (Π0̂ · · ·Π0̂) (|0〉 |0〉 · · · |α〉 |0〉)

= 〈0|Π0̂|0〉〈0|Π0̂|0〉 . . . 〈α|Π0̂|α〉 . . . 〈0|Π0̂|0〉〈0|Π0̂|0〉 (4.79)

= 1 · 1 · . . . · e−|α|2 . . . · 1 · 1 = 1− e−|α|2 , ∀ i = 1, . . . ,M. (4.80)

Secondly, all symbols can be detected correctly, that means with outcome 0̂ when

the slot is |γk,i〉 = |0〉 and with outcome 1̂ where there is |γk,i〉 = |α〉. The

probability of the outcome is

P
[
z = [0̂1̂0̂ · · · 0̂]|x = i

]
=







1− e−|α|2 if zk = 1̂

0 otherwise

(4.81)
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Thirdly, all other outcomes sequence z̄ has at least two outcomes z = 1̂, and

therefore they cannot be observed because of the probabily (4.75),

P
[
z̄ = [0̂1̂1̂ · · · 0̂]|x = i

]
= 0, ∀ i = 1, . . . ,M. (4.82)

The classical receiver chooses the estimate with a MAP criterium. The a

posteriori probabilities for the outcome sequences read

P
[
x = i|zj = 1̂, zk = 0̂ for k 6= j

]
=







1 if i = j

0 if i 6= j

(4.83)

and hence

argmax
i=1,...,M

P
[
x = i|zj = 1̂, zk = 0̂ for k 6= j

]
= j (4.84)

while for the outcome z̄ = [0̂ . . . 0̂],

P
[
x = i|zj = 0̂ ∀j

]
=

1

M
∀i = 1, . . . ,M (4.85)

and hence the estimation is chosen at random,

argmax
i=1,...,M

P
[
x = i|zj = 0̂ ∀j

]
= {1, . . . ,M}. (4.86)

The possible errors in the detection happen if no outcome 1̂ is measured from

the slots and when choosing at random the receiver fails in the guessing. Hence,

the transition probabilities betweeen transmitted and estimated symbols are

P [x̂ = i|x = j] =







1− e−|α|2 + e−|α|2

M
if i = j

e−|α|2

M
if i 6= j

(4.87)

Finally, the error probability results to be

P (classical)
e =

M − 1

M
e−|α|2 =

M − 1

M
χ. (4.88)

4.3.2 Unconditional Nulling Receiver

The direct detection does not distinguish symmetrically between the quantum

states |α〉 and |0〉. While the outcome 1̂ from one slot assures that in the slot
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there was the quantum state |α〉, in presence of the outcome 0̂ we only have a

partial confirmation that in the slot there was |0〉.
As a consequence of the direct detection, only a few outcome sequences z̄

are possible, the M strings with one zk = 1̂ and z̄ = [0̂ . . . 0̂]. It seems reason-

able to ask if a receiver that consider more outcomes can obtain an improved

performance.

This can be achieved considering the opposite situation in terms of words in

the codebook, that is when the symbol x = i is associated a quantum state that

is the tensor product of states |α〉 in all slots except for the one in position i that

is |0〉.
This new situation can be achieved sending PPM signals from the transmitter

and performing a perfect nulling at the receiver side. The receiver performs a

displacement2 of |−α〉 to the incoming state |γk,i〉 in the slot. If the state was

|γk,i〉 = |0〉, the receiver displace it to the state |−α〉, otherwise if the quantum

state was |γk,i〉 = |α〉, it is displaced to the ground state |0〉.
In this variation of the PPM modulation, we can still perform a classical

discrimination with measurement projectors (4.71) in each slot, obtaining a global

POVM in the whole symbol time interval that is constructed through tensor

products as in (4.76).

The transition probabilities for the direct detection are the same as (4.73),

since the energy detection does not distinguish between |α〉 and |−α〉, therefore

including the nulling operation we achieve the following transition probabilities

P
[
zk = 0̂| |γk,i〉 = |0〉

]
= e−|α|2 ,

P
[
zk = 0̂| |γk,i〉 = |α〉

]
= 1,

P
[
zk = 1̂| |γk,i〉 = |0〉

]
= 1− e−|α|2 ,

P
[
zk = 1̂| |γk,i〉 = |α〉

]
= 0.

(4.89)

2The displacement operation D(α) allows to shift a coherent state |γ〉 by an amount of α

such that

D(α) |γ〉 = |γ + α〉 .

For more details, we suggest the reading of [58].
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However with this scheme, now more outcomes z̄ are possible. In particular, we

can classify the outcomes in two categories:

• z̄ has only one digit 0̂. In displacing the symbol x = i, the state |α〉 becomes

|0〉 that is detected as 0̂ from the photon counting. All the other state

|0〉, displaced to |−α〉, are detected as 1̂. The probability of this outcome

sequence is

P
[
z̄ = [1̂0̂1̂ . . . 1̂]|x = i

]
= 1 · (1− e−|α|2)M−1 (4.90)

• z̄ has k digits equal to 0̂ in the set Z,Z ⊂ {1, . . . ,M}. One of them

comes from the detection of |α〉 displaced to |0〉, the other k − 1 from |0〉
displaced to |−α〉 misdetected by the photon counting. The probabilty of

this outcome sequence is

P
[
zk = 0̂ for k ∈ Z, zj = 1̂ for k /∈ Z, |x = i

]
= 1·(1−e−|α|2)M−k·(e−|α|2)k−1

(4.91)

The estimation x̂ is again choosen with the MAP criterion. The a posteriori

probabilities are

P
[
x = i|zj = 0̂, zk = 1̂ for k 6= j

]
=







1 if i = j

0 otherwise

(4.92)

if there is only one outcome 0̂, otherwise

P
[
x = i|zk = 0̂ for k ∈ Z, zj = 1̂ for k /∈ Z

]
=







1
k

if i ∈ Z

0 otherwise

(4.93)

In the former case, (4.92), the MAP criterium gives

argmax
i=1,...,M

P
[
x = i|zj = 0̂, zk = 1̂ for k 6= j

]
= j, (4.94)

while in the latter case it is

argmax
i=1,...,M

P
[
x = i|zk = 0̂ for k ∈ S, zj = 1̂ for k /∈ Z

]
= Z, (4.95)
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which means that when the receiver sees outcomes 0̂ in the set Z, it chooses at

random one symbol that set.

Finally, the probability of correct decision is

P (nulling)
c =

1

M

∑

i

P [x̂ = i|x = i] = P [x̂ = 1|x = 1] = (4.96)

=
M−1∑

j=0

1

j + 1

(
M − 1

i

)

(1− p)M−1−jpj (4.97)

=
M−1∑

j=0

1

M

(
M

i+ 1

)

(1− p)M−1−jpj (4.98)

=
1

Mp

∑

l

= 1M
(
M

l

)

(1− p)M−lpl (4.99)

=
1

Mp

[
1− (1− p)M

]
(4.100)

(4.101)

with p = e−|α|2 = χ. The error probability can be written as

P (nulling)
e =

1

Mχ

[
(1− χ)M − 1 +Mχ

]
. (4.102)

It can be shown that

P (classical)
e ≤ P (nulling)

e (4.103)

for all p ∈ [0, 1], and hence this unconditional nulling strategy reduces the per-

formance. However, a modification of the nulling strategy brings to a great im-

provement of the error probability, as we see in Section 4.3.3.

4.3.3 Conditional Nulling Receiver

Both direct detection and the unconditional nulling receiver do not symmetrically

discriminate between the quantum states |0〉 and |α〉. With a direct detection we

can identify with probability 1 the presence of the quantum state |α〉. On the

contrary with the nulling operation, we can identify for sure the slot with |0〉,
when we get the outcome 1̂.
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The Conditional Nulling Receiver takes advantage of both situations [57].

Since the nulling operation is performed at the receiver side, the receiver can

choose at each slot whether to displace or not the incoming unknown quantum

state.

The nulling strategy is described as follows. In the first slot, the unknown

quantum state is displaced by an amount −α, and a direct detection is performed.

If the state is |α〉, it is displaced to |0〉 and the outcome is definitely 0̂. On the

contrary, if the quantum state was |0〉, both outcomes 1̂ and 0̂ are possible. The

receiver assigns to the outcome z1 = 0̂ a temporary estimation x̂ = 0, while the

outcome 1̂ is a definite claim that the state was |0〉.

In the former case, the receiver proceeds performing a direct detection on

the remaining slots, continuing to believe in the temporary estimation unless it

obtains conclusive evidence of an other hypotesis observing any photons in the

remaining slots. In this case, the receiver neglects the temporary hypothesis

and takes the one corresponding to the slot where at least one photon has been

observed.

In the latter case, that is when the outcome z1 = 1̂ is observed, the receiver

is certain that the transmitted symbol was not x = 1, and the discrimination

problem reduces to its M − 1-ary version, and the receiver applies its strategy

recursively.

To resume, the strategy of the receiver simply consists in displacing the quan-

tum state until it obtains partial confirmation of the hypothesis k with the out-

come zk = 0̂. Afterward, it performs a photon counting in the remaining time

slots. If during this direct detection an outcome 1̂ is measured, the previous hy-

pothesis is neglected and the receiver takes the hypothesis corresponding to the

slot where the photons has been observed.

The receiver strategy can be well represented with a binary tree graph, where

each node represents a measurement on a slot, and the edges the possible out-

comes 1̂ or 0̂. After the last measurements that correspond to the lower level of

the tree, the final estimation x̂ is made. In Figure 4.1 it is represented the tree
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associated with the receiver strategy with M = 4. The tree grows from left to

right, and each level represents a measurements. Note that some branch are cut

since some transition probabilities are null.

Having defined the receiver strategy, we can evaluate its performance in terms

of error probability.

Consider first the symbol x = 1. Since in the first slot the quantum state is

nulled, and afterwards a direct detection is performed on the remaining |0〉 states,

in each slot the outcome is certainly zk = 0̂, and the symbol is always correctly

detected,

P [x̂ = 1|x = 1] = 1. (4.104)

On the contrary, a symbol x = i, i > 1 can be wrongly estimated into x̂ =

k, k < i. This case may happen if the receiver measure two wrong outcomes, zk

and zi. The receiver starts to displace the quantum state |0〉 into |−α〉, measuring

zl = 1̂, l < k with probability 1− e−|α|2 = 1− χ. If in the k-th slot, the displaced

state |−α〉 gives zk = 0̂, and the receiver start to photon counting the remaining

slot without apply the displacement operation. If in the i-th slot the outcome is

zi = 0̂, the receiver misses the estimation.

The error probability can therefore be evaluated as

P (cond.nulling)
e =

1

M

M∑

i=1

P [x̂ 6= i|x = i] =
1

M

M∑

i=2

i−1∑

l=1

P [x̂ = l|x = i] =

=
1

M

M∑

i=2

i−1∑

l=1

(1− χ)l−1χ2 =
χ2

M

M∑

i=2

(1− χ)i−1 − 1

((1− χ)− 1)

=
χ

M

[

M − 1−
[
(1− χ)M − 1

((1− χ)− 1)
− 1

]]

=
(1− χ)M − 1 +Mχ

M
(4.105)

The Conditional Nulling Receiver drastically improves the performance for

the Pulse Position Modulation, approaching the theoretical limit for all the car-

dinality M and the values of χ = e−|α|2 . In particular, it can be numerically

shown that the deviation does not exceed the optimal limit by a multiplicative
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N

D

D

D
x̂ = 1

0̂

x̂ = 41̂
0̂

D
x̂ = 3

0̂

\
1̂

0̂

D

D
x̂ = 2

0̂

\
0̂

\

1̂0̂

N

D

D
x̂ = 2

0̂

x̂ = 41̂
0̂

D
x̂ = 3

0̂

\
1̂

0̂

N

D
x̂ = 3

0̂

x̂ = 41̂
0̂

N
x̂ = 4

0̂

\
1̂

1̂

1̂

Figure 4.1: Conditional Receiver strategy, depicted as a binary tree, growing from

left to right, for M = 4. Each node indicates if the nulling operation is applied

(N) or if just direct detection (D) is performed. On the edge the outcomes 0̂ or

1̂ of the photon counting. After the last outcomes, the final estimation x̂ of the

symbol x ∈ {1, 2, 3, 4} is performed. Dashed edges indicate impossible outcomes.
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factor of 2.15 [57],

1 ≤ P
(theoretical)
e

P
(cond.nulling)

e

≤ 2.15 ∀ χ,M. (4.106)

4.3.4 Improved Conditional Nulling Receiver

Two architectures have been proposed by Guha et al. [59] to improve the Condi-

tional Nulling scheme. The key idea is that a non-exact nulling of the signal can

lead to better performances, just as the Improved Kennedy Receiver described in

Section 2.3 uses the same concept to enhance the Kennedy receiver performance

[24].

Both architectures follow the adaptive strategy of the Conditional Nulling

Receiver, depicted in Figure 4.1, but with a slightly modification in the local

measurements performed in each slots in place of the nulling operation.

The first architecture, denoted in [59] as Type I, applies a constant displace-

ment D(β), with β 6= −α in place of the exact nulling. The second architecture,

called Type II, in addition to the non-exact nulling includes an optical phase

amplifier with gain G to squeeze the partially-nulled coherent state, further im-

proving the performance. A photon counting follows these operations, and gives

the outcomes zk = 0̂ and zk = 1̂ that drive the receiver strategy.

The error probability for the Improved Conditional Nulling Type II scheme,

in our ideal assumptions of unit efficiency, no dark current and no death time,

becomes

P (impr.cond.nulling)
e =

q1(1−(1−q0)M−1)+e−|α|2(Mq0−1+(1−q0)M)

Mq0
(4.107)

with

q0 = p0̂|0 =

exp



− (
√
G+

√
G− 1)2|β|2

1 +
√
G− 1(

√
G+

√
G− 1)





√
G

,

q1 = p1̂|1 = 1−
exp



− (
√
G+

√
G− 1)2|α− β|2

1 +
√
G− 1(

√
G+

√
G− 1)





√
G

.

(4.108)
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Substituting G = 1 gets the expression for the Type I architecture. The displace-

ment β and the phase-sensitive amplifier G are numerically optimized to reach

the maximum performance (4.107) of this receiver scheme.

The Improved Conditional Nulling receiver outperforms the Conditional Nulling

and the Classical receiver, as represented in Figures 4.1, 4.3 and 4.4. The gain is

more evident for weak values of mean photon number, |α|2 < 2, while for |α|2 ≈ 2

the receiver approach the performance of the Conditional Nulling.

4.4 Qubit Framework Representation

We shall introduce a useful representation for the PPM quantum states that

simplifies the description of the receiver schemes. As we have already seen in

(4.2), the global PPM coherent states in H are composed by a sequence of coherent

states in H0 in a tensor product.

Since in each H0 only two quantum states are possible, we can consider the

subspace of the coherent states spanned by {|0〉 , |α〉}, that is isomorphic to a

qubit Hilbert space H′
0. We can associate to each quantum state |0〉 and |α〉 a

qubit in H′
0, respectively

|γ̃0〉 = cos θ |x〉+ sin θ |x̂〉 , |γ̃1〉 = cos θ |x〉 − sin θ |x̂〉 , (4.109)

where {|x〉 , |x̂〉} is a basis of H′
0, and without loss of generality θ ∈ [0, π/4]. For

a correct representation in terms of qubit, the inner product between |0〉 and |α〉
must equal the inner product between |γ̃0〉 and |γ̃1〉,

χ = |〈0|α〉|2 = e−|α|2 = |〈γ̃0|γ̃1〉|2 = cos2 2θ. (4.110)

In this representation, the quantum state corresponding to the coherent state |γi〉
is then defined in H′

0
⊗M with the tensor product of qubit (4.109) following the

definitions (4.2)-(4.3).

A projective measurement on H′
0 with outcomes zk = 0̂, 1̂ can be written

without loss of generality with operators,

∣
∣µk,0̂

〉
= cosφk |x〉+ sinφk |x̂〉 ,

∣
∣µk,1̂

〉
= sinφk |x〉 − cosφk |x̂〉 (4.111)
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described by the angle φk ∈
[
−π

2
, π
2

]
, where the subscript indicate a generic

dependances of the angle φ by some variables such as the slot number or previous

outcomes.

Transition probabilities can be evaluated using the Born Rule (1.19), in this

case resulting in

P
[
zk = 0̂| |γk,i〉 = |γ̃0〉

]
= p0̂|0 = |〈m0̂|γ̃0〉|2 = cos2(θ − φk), (4.112)

P
[
zk = 1̂| |γk,i〉 = |γ̃0〉

]
= p1̂|0 = |〈m1̂|γ̃0〉|2 = sin2(θ − φk), (4.113)

P
[
zk = 0̂| |γk,i〉 = |γ̃1〉

]
= p0̂|1 = |〈m0̂|γ̃1〉|2 = cos2(θ + φk), (4.114)

P
[
zk = 1̂| |γk,i〉 = |γ̃1〉

]
= p1̂|1 = |〈m1̂|γ̃1〉|2 = sin2(θ + φk). (4.115)

In this Section we analize the operators (4.111) associated with the local

measurement in each slot of the receiver scheme presented previously, to highlight

their limitations.

The measurement operator corresponding to the direct detection (4.71) are

∣
∣µk,0̂

〉
= |γ̃0〉 = cos θ |x〉+ sin θ |x̂〉

∣
∣µk,1̂

〉
= sin θ |x〉 − cos θ |x̂〉

(4.116)

such that we obtain the transition probabilities (4.72)-(4.74)

p0̂|0 = 1

p0̂|1 = χ

p1̂|0 = 0

p1̂|1 = 1− χ

(4.117)

In the qubit framework, the nulling operation inverts the role of the quantum

states |0〉 and |α〉, therefore changing the transition probabilities of the outcomes

zk. The corresponding projectors in the qubit representation are

∣
∣µk,1̂

〉
= |γ̃1〉 = cos θ |x〉 − sin θ |x̂〉

∣
∣µk,0̂

〉
= sin θ |x〉+ cos θ |x̂〉

(4.118)
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that give transition probabilities

p0̂|0 = χ

p0̂|1 = 0

p1̂|0 = 1− χ

p1̂|1 = 1

(4.119)

exactly matching those in equations (4.89).

In the case of Direct Detection, the measurement projectors (4.116) are mea-

sured in each slot. Instead, the Unconditional Nulling receiver implements in each

slot the measurements associated with (4.118). The Conditional Nulling receiver

uses an adaptive strategy, measuring with (4.116) or with (4.118) depeding on

the previous outcome.

The Improved Conditional Nulling receiver uses the same adaptive strategy as

the Conditional Nulling. When the displacement β and the phase amplification

G are employed, the angle φk that defines the measurement operators (4.111)

in the slot can be obtained by inversion of the transition probabilities p0̂|o0, p1̂,1

given in (4.108), resulting in

φ =
1

2
sin 2θ(p0̂|0 − p1̂|1) + j cos 2θ(p0̂|0 + p1̂|1 − 1). (4.120)

where · is the four-quadrant inverse tangent3.

4.5 An Adaptive Receiver for PPM

The Conditional Nulling scheme and its improved versions have some limitations

in both the strategy and in the local measurements. First, in both architectures

the choice of whether to apply the displacement or not in the next measure-

ment depends only upon the last outcome, while in a more general scheme it

would depend upon all the previous outcomes. Second, the local transition prob-

abilities obtained with a photon counting, possibly preceded by a displacement

3The function φ = a+ jb returns the argument of the complex number a+jb =
√
a2 + b2 ejφ,

with j =
√
−1 the imaginary unit.
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and a squeezing operation, are more restricted than the one described by the

counterpart of (4.111) in the coherent space. It was pointed out in [59] that

further performance improvements can be obtained by considering different dis-

placements βk for each slot k = 1 . . .M . Moreover, further generalization leads to

time variying displacements βk(t). Third, the decision tree of these architecture

is not symmetrical, and to direct detection of all the slots after outcome zk = 1̂

has been observed in a nulled slot may not be the best strategy.

In this Section we present a receiver scheme that overcomes these limitations.

We propose a general structure for an adaptive receiver, where the next measure-

ments are decided upon all the previous outcomes z̄k. The receiver algorithm

defines a perfect binary tree with M levels, where each node corresponds to a slot

measurement and each edge to an outcome (see Figure 4.1). In order to focus

on the transition probabilities, we use the qubit representation to describe the

measurement in the k + 1-th slot with the angle φk, i.e. after k outcomes has

been observed. In fact, due to the Dolinar receiver on the binary discrimination

of coherent states and the results by Takeoka et al. [60], with linear optics and

photon counting any projective measurements can be implemented on H0. We

specify the function φk = πk(z̄k) to define the adaptive strategy.

The receiver starts with the first measurement specified by φ1. Then, depend-

ing on the outcome z1 = 0̂ or z1 = 1̂, it proceeds with a measurement in the

second slot defined by φ2 = π2(0̂) or φ2 = π2(1̂) respectively. In general it results

π2(0̂) 6= π2(1̂). The receiver continues to perform measurements following the

path indicated by the outcomes sequence. After the last measurement, the final

estimation is taken based on the whole outcome sequence z̄M .

This receiver structure is a generalization of the previously seen adaptive re-

ceiver. In order to achieve optimal performance, an optimization of all the angles

πk(z̄k), for all k and z̄k is necessary. Since the number of angles grows exponen-

tially in the number of levels, that is the PPM cardinality, the optimization of the

final probability of correct decision is highly demanding. However, we can sim-
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π1(∅)

π2(1̂)

π3(1̂1̂)

π4(1̂1̂1̂)

z̄ = 1̂1̂1̂1̂

z̄ = 1̂1̂1̂0̂
1̂

π4(1̂1̂0̂)

z̄ = 1̂1̂0̂1̂

z̄ = 1̂1̂0̂0̂

0̂
1̂

π3(1̂0̂)

...

0̂
1̂

π2(0̂)

π3(0̂1̂)

...

1̂

π3(0̂0̂)

π4(0̂0̂1̂)

z̄ = 0̂0̂1̂1̂

z̄ = 0̂0̂1̂0̂
1̂

π4(0̂0̂0̂)

z̄ = 0̂0̂0̂1̂

z̄ = 0̂0̂0̂0̂

0̂

0̂

0̂

Figure 4.1: Strategy tree for an adaptive receiver algorithm, in the case of a 4-

PPM. Each node represents a measurements, identified by the angle φk = πk(z̄k)

employed at the measurement k + 1 after observing the outcomes sequence z̄k,

and each branch a possible outcome. The algorithm proceeds from the root on

the left to the leaves on the right following the path indicated by the outcomes.
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plify the optimization problem by applying the dynamic programming algorithm,

that is the topic of the next Section.

In order to achieve an optimal performance, an optimization of all the angles

φk is necessary. Since the number of angles grows exponentially in the number

of levels, that is the PPM cardinality, an optimization of the final probability

of correct decision is demanding, but applying dynamic programming we can

define an optimization algorithm. For a review of the dynamic programming

optimization, see Appendix 4.A.

4.5.1 State of the Algorithm

The dynamic programming algorithm applies to dynamic systems, whose time

evolution is described by a system of equations involving its system state. In our

case, the time evolution occurs in discrete time steps.

We refer to the iteration k of the algorithm as the moment just after the

sequence z̄k has been observed, that is after the k-th measurement and before the

k + 1-th one. When k = M , no more measurements are performed but a final

estimation is made in order to choose x̂. By extension, we can define k = 0 the

time step before the measurement in the first slot.

The final performance index (1.21) is a function of the joint probabilities

between the possible outcomes and the transmitted symbols. Therefore, it seems

natural to consider how these probabilities evolve during the execution of the

receiver scheme. The information acquired at slot k can be described by the

evolution of the vector of the joint probabilities

p̄z̄k =











p1,z̄k

p2,z̄k
...

pM,z̄k











, pi,z̄k = P [x = i, z̄k] . (4.121)

However, not all the entries in (4.121) are necessary in order to define the system

state of the receiver algorithm. In fact, given the outcome sequence z̄k, it turns
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out that the system state sk ∈ Sk of the algorithm at step k corresponds to the

triple

sk(z̄k) = (pm,z̄k , pM,z̄k ,m(z̄k)), (4.122)

Sk = {(u, v, i) : 0 ≤ u ≤ 1, 0 ≤ v ≤ 1,

u+ v ≤ 1, i ∈ {1, . . . , k}}, (4.123)

where m(z̄k) is the maximum a posteriori (MAP) estimate of x given the observed

sequence z̄k among the symbols 1, . . . , k, i.e.

m(z̄k) = argmax
i≤k

pi,z̄k , (4.124)

with pm(z̄k),z̄k indicating the joint probability

pm(z̄k),z̄k = max
i≤k

pi,z̄k . (4.125)

We highlight that the system state sk is a random variable, that depends upon

the realization of the outcomes sequence z̄k. However, to shorten the notation,

when assuming a given z̄k, we drop its dependency.

We show that by definition (4.122) we can describe the evolution of the system

state with an update equation. Later, in the next Section, we show that we can

write the probability of correct decision as a function of sM(z̄M).

Consider the system state sk(z̄k) and the outcome sequences that can be

generated from z̄k with zk+1 = 0̂ or zk+1 = 1̂, employing the angle φ := πk(z̄k).

The joint probabilities pM,[z̄k0̂]
, pM,[z̄k1̂]

can be easily obtained from the transition

probabilities in equations (4.115), in the case k < M − 1 by

pM,[z̄k0̂]
= cos2(θ − φ)pM,z̄k ,

pM,[z̄k1̂]
= sin2(θ − φ)pM,z̄k ,

(4.126)

while if k =M − 1 by

pM,[z̄k0̂]
= cos2(θ + φ)pM,z̄k ,

pM,[z̄k1̂]
= sin2(θ + φ)pM,z̄k .

(4.127)
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Note that given the system state sk(z̄k), the probability pM,z̄k equals the joint

probability

pi,z̄k = P [x = i, z̄k] , i = k + 1, k + 2, . . . ,M

due to the equal a priori probability and the same quantum states |γ̃0〉 in the first

k slots for all symbols x = k + 1, . . . ,M (see Lemma 4.3 in Appendix 4.5.2).

In the case of pm(z̄k0̂),[z̄k0̂]
and pm(z̄k1̂),[z̄k 1̂]

, in order to obtain the update equa-

tion we apply the definition (4.125),

pm(z̄k0̂),[z̄k0̂]
= max

i≤k+1
{pi,[z̄k 0̂]}

= max {cos2(θ + φ)pk+1,z̄k ,max
i≤k

{cos2(θ − φ)pi,z̄k}}

= max {cos2(θ + φ)pM,z̄k , cos
2(θ − φ)pm(z̄k),z̄k}, (4.128)

pm(z̄k1̂),[z̄k1̂]
= max

i≤k+1
{pi,[z̄k 1̂]}

= max {sin2(θ + φ)pk+1,z̄k ,max
i≤k

{sin2(θ − φ)pi,z̄k}}

= max {sin2(θ + φ)pM,z̄k , sin
2(θ − φ)pm(z̄k),z̄k}. (4.129)

Thereby, the symbol m(z̄k) is updated into

m([z̄k zk+1]) ∈ {m(z̄k), k + 1} (4.130)

accordingly with the term maximizing (4.128) and (4.129). This means that at

each update of the system state, the symbol m(z̄k) can be replaced only by the

symbol corresponding to the current slot.

Given the update equations, we have to specify the initial system state s0

of the algorithm before the first measurement, that does not depend upon any

outcomes, z̄0 = ∅. This system state collects the a priori informations, and due

to the equal a priori distribution for the symbols, we can define

s0 =

(
1

M
,
1

M
, ·
)

, (4.131)

where it is unneccessary to specify m(∅), since the first update of the system

state leads to the trivial maximization

m(z1) = argmax
i≤1

pi,z1 = 1. (4.132)
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The update equations (4.126)-(4.130) suggest the role of the angles φk =

πk(z̄k) as the control variables we can use to tune the transition probabilities. In

the next Section we formulate the corresponding expected reward function, and

following the dynamic programming we define φk as function of the state sk,

φk = πk(sk(z̄k)) (4.133)

optimizing for each z̄k.

4.5.2 Useful Lemmas

In this Section we give some useful Lemmas that helps to better understand the

optimization algorithm.

Lemma 4.1. Let p0, p1, p0 + p1 ≤ 1 be the a priori probability of two symbols

i = 0, 1 associated to the quantum states |γ̃0〉 , |γ̃1〉 respectively. The maximum

probability of correct discrimination between i = 0 and i = 1 achievable with

measurement operators (4.111) defined by φ is

1

2

[

p0 + p1 +
√

(p0 + p1)2 − 4p0p1χ
]

, (4.134)

and the optimal angle defined by

φ∗ =
1

2
cos 2θ(p0 − p1) + j sin 2θ(p0 + p1). (4.135)

Proof. Consider the measurement operators (4.111), and without loss of gener-

ality associate the outcomes z = 0̂ with the estimation of i = 0 and z = 1̂ with

i = 1. The probability of correct discrimination can be written as

Pc = P
[
z = 0̂|i = 0

]
p0 + P

[
z = 1̂|i = 1

]
p1

= cos2(θ − φ)p0 + sin2(θ + φ)p1

=
1 + cos(2θ − 2φ)

2
p0 +

1− cos(2θ + 2φ)

2
p1 (4.136)

with transition probabilities defined by (4.115). The maximization of (4.136)

with respect to the angle φ leads to the relation

tan 2φ = tan 2θ
p0 + p1
p0 − p1

, (4.137)



120CHAPTER 4. QUANTUM RECEIVERS FOR PULSE POSITION MODULATION

solved by the angles verifing

sin 2φ = ±p0 + p1√
R

sin 2θ,

cos 2φ = ±p0 − p1√
R

cos 2θ,

(4.138)

with R a normalization term,

R = cos2 2θ(p0 − p1)
2 + sin2 2θ(p0 + p1)

2. (4.139)

Expression (4.138) with the plus sign corresponds to the point of maximum, and

the thesis (4.135) follows. Substituting (4.135) in (4.136) gives

Pc =
1

2

[

p0 + p1 +
√
R
]

=
1

2

[

p0 + p1 +
√

(p0 + p1)2 − 4p0p1 cos2 2θ
]

. (4.140)

2

Corollary 4.1. If the quantum states associated to the two symbols i = 0, 1 is the

same, i.e. |γ̃0〉 = |γ̃1〉, the maximal probability of correct discrimination between

i = 0 and i = 1 is the maximum of their a priori probability,

Pc = max{p0, p1}. (4.141)

The Corollary follows from χ = |〈γ̃0|γ̃1〉|2 = 1. Intuitively, this means that in

the case of the same quantum states, we cannot discriminate the symbols i = 0, 1

better that their a priori distribution.

Moreover, since (4.134) is always non lower than (4.141), at the last measure-

ment it is always better to discriminate between the last symbol x = M and a

previous one x = i < M . This is reasonable since the last slot would eventu-

ally deliver information about the last symbol, and it is useless to discriminate

previous ones.

In addition, expression (4.134) is monotonically increasing with the probabil-

ities p0, p1, such that it is always better to compare the symbol x = i < M with

highest a priori probability.
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Lemma 4.2. The relative ordering of the a priori probabilities of symbols i, j 6= k

before the k-th measurement is maintained in the a posteriori distribution, inde-

pendently of the outcome zk.

Proof. Consider two simbols x = i and x = j, i, j 6= k with a priori proba-

bilities pi,zk−1
, pj,zk−1

before the k-th measurement, with pi,zk−1
> pj,zk−1

. Both

symbols i, j has a quantum state |γ̃0〉 in the k-th position of |γi〉 , |γj〉. Hence,

the transition probability is the same,

P [zk|i] = |〈mzk |γ̃0〉|2 = P [zk|j] (4.142)

and the joint probabilities are multiplied by the same factor

pi,zk = |〈mzk |γ̃0〉|2pi,zk−1
, pj,zk = |〈mzk |γ̃0〉|2pj,zk−1

, (4.143)

and hence the a posteriori distribution of x = i, j 6= k reflects the same relative

ordering of the priori. 2

This Lemma is a consequence of the fact that i, j 6= k has the same quantum

states |γ̃0〉 in position k. The k-th measurement does not give any information

about the discrimination between symbols i, j 6= k because they all behave in

the same way in this slot. The k-th slot can give informations only for the the

discrimination of the k-th symbol, whether it is more likely or not respect the

other.

Corollary 4.2. Given an outcome sequence z̄k, the relative ordering of the joint

probabilities of symbols x = 1, . . . , k is maintained in the joint probabilities after

measurement k + 1, . . . ,M , independently of the outcomes zk+1, . . . , zM .

Proof. The quantum states of symbols x = 1, . . . , k in position k + 1, . . . ,M of

the tensor product are |γ̃0〉, so the joint probabilities after measurement l > k is

pi,[z̄kzk+1...zl] =

P [zl|zl−1, . . . , z̄k, |γ̃0〉] · . . . · P [zk+1|z̄k, |γ̃0〉] pi,z̄k (4.144)

that is, all the joint probabilities are multiplied by the same factors. 2
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Lemma 4.3. The joint probabilities of symbols x = k + 1, k + 2, . . . ,M with z̄l

after any measurement in the l-th slot, l = 1, . . . , k, verify pk+1,z̄l = pk+2,z̄l =

. . . = pM,z̄l.

Proof. Consider a measurement l ∈ 1, . . . , k. The joint probabilities of symbols

x = k + 1, k + 2, . . . ,M with the outcomes vector z̄l can be calculated as

px,z̄l = P [zl|z̄l−1, x]P [zl−1|z̄l−2, x] · · ·P [z1|x]
1

M
, (4.145)

but since each symbol x = k + 1, . . . ,M has a quantum state |γ̃0〉 in position

1, . . . , l, l ≤ k, the conditional probabilities give

px,z̄l = |〈mz̄l|γ̃0〉|2|〈mz̄l−1
|γ̃0〉|2 · · · |〈mz̄1|γ̃0〉|2

1

M
, (4.146)

and hence pk+1,z̄l = pk+2,z̄l = . . . = pM,z̄l . 2

Intuitively, since all symbols x = k + 1, k + 2, . . . ,M in position 1, . . . , k has

quantum states equal to |γ̃0〉, we cannot gain any information about their discrim-

ination on the base of the first k outcomes, and therefore their joint probabilities

are the same.

Lemma 4.4. Joint probabilities are non increasing in subsequent measurements,

and always lower than the a priori probability 1
M

.

Proof. Writing the joint probability with the conditional chain rule

pi,z̄k = P [zk|z̄k−1, i]P [zk−1|z̄k−2, i] · · ·P [z1|i]
1

M
(4.147)

we see that after each measurement, the joint probabilities are updated with

the transition probabilities depending upon the outcome. Since the transition

probabilities are not greater that 1, they are non increasing, and it is clear that

pi,z̄k ≤ 1
M

. 2

4.5.3 Expected reward function

In this section we rewrite the probability of correct decision as a function of the

system state and find a suitable definition in terms of the reward-to-go functions.



4.5. AN ADAPTIVE RECEIVER FOR PPM 123

In general, we can identify two stages in a receiver strategy: a measurement

stage, that is the task of acquiring information about the system under investiga-

tion, and an estimation stage, that is the elaboration of the information gained

in order to formulate the answer to our detection problem. An optimization of

the receiver scheme requires of course the optimization of both stages.

The estimation stage can be defined by a map h that assigns to each mea-

surement outcome sequences z̄M an estimate x̂ of the transmitted symbol x. In

particular, the map defines a partition of the space ZM of all possible outcomes

sequences in disjoint subsets Rx̂, x̂ ∈ 1, . . . ,M , each one associated to an estima-

tion,

h : ZM −→ {1, . . . ,M}

z 7−→ x̂ : z ∈ Rx̂

(4.148)

The final probability of correct decision is therefore rewritten as

Pc = P [x̂ = x] =
M∑

i=1

P [x̂ = i, x = i]

=
M∑

i=1

∑

z∈ZM

P [x̂ = i, x = i, z̄M = z]

=
M∑

i=1

∑

z∈ZM

P [x̂ = i|x = i, z̄M = z] pi,z (4.149)

and by definition (4.148), given the observation z̄M the estimate x̂ is deterministic,

P [x̂ = i|x = i, z̄M = z] =







1 if z ∈ Ri

0 otherwise

(4.150)

and the probability of correct decision is written as function of joint probabilities

between transmitted symbols and outcome sequences,

Pc =
∑

z∈ZM

P [x = h(z), z̄M = z] . (4.151)

After the measurement stage, for any measurement strategy employed from slot 1

to slot M , we can evaluate the joint probabilities px,z̄M for each x and z̄M . Given
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these, in order to maximize (4.151), we define h as the indicator function (4.150)

that selects the maximum joint probability (MAP criterium),

h(z) = argmax
i∈{1,...,M}

pi,z, (4.152)

and the probability of correct decision reads

Pc =
∑

z∈ZM

ph(z),z =
∑

z∈ZM

max
i≤M

pi,z =
∑

z∈ZM

pm(z),z (4.153)

as a function of the system state sM .

Expression (4.153) corresponds to the expression (4.183), and suggests to

define

g(sM(z)) = pm(z),z, (4.154)

E
sM

[g(sM)] =
∑

z∈ZM

pm(z),z. (4.155)

Consider the system state sk(z) before the k + 1-th measurement, and define

the expected reward function

Jk(sk(z), φk, πk+1, . . . , πM−1) =

=
∑

z′∈ZM−k

pm([z z′]),[z z′](sk(z), φk, πk+1, . . . , πM−1) (4.156)

where the set ZM−k contains all the possible sequences [zk+1 . . . zM ] composed by

M − k outcomes. The dependency upon the variables sk(z), φk, πk+1, . . . , πM−1

in the RHS of (4.156) is included the transition probabilities of the terms in the

sum,

pi,z̄M = pzM |z̄M−1,i(πM−1) · · · pzk+1|z̄M ,i(φk) pi,z̄M (4.157)

where i ∈ {m(z), k + 1, . . . ,M} by the update equation (4.130).

It is trivial to see that

J0(s0, π0(s0), . . . , πM−1) = Pc (4.158)
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and

JM−1(sM−1(z), φM−1) =
∑

zM=0̂,1̂

pm([z zM ]),[z zM ](φM−1)

= pm([z 0̂]),[z 0̂](φM−1) + pm([z 1̂]),[z 1̂](φM−1)

= P
[
zM = 0̂|x = i

]
pi,z + P

[
zM = 1̂|x = j

]
pj,z. (4.159)

with i = h([z 0̂]) and j = h([z 1̂]). As explained in the Lemma 4.1 in Appendix

4.5.2 , expression (4.159) is the probability of correct decision of the binary dis-

crimination problem between symbols i = m(z) and j =M , with the joint prob-

abilities pi,z, pj,z provided by the system state sM−1(z). The expression admits an

analytical maximixation

J∗
M−1(sM−1) =

1

2

[

pm + pM +
√

(pm + pM)2 − 4pmpMχ
]

(4.160)

obtained employing the angle in the M -th measurement

π∗
M−1(sM−1) =

1

2
cos 2θ(pm − pM) + j sin 2θ(pm + pM) (4.161)

where in both (4.160) and (4.161) we drop the dependency from z̄M−1.

Moreover, we can easily write down the update equation for the expected

reward

Jk(sk(z), φk, πk+1, . . . , πM−1) =
∑

z′∈
ZM−k

pm([z z′]),[z z′]

=
∑

zk+1

∑

z′′∈
ZM−k−1

pm([z zk+1 z′′]),[z zk+1 z′′]

= Jk+1(sk+1([z 0̂]), πk+1, πk+2, . . . , πM−1)

+ Jk+1(sk+1([z 1̂]), πk+1, πk+2, . . . , πM−1) (4.162)

In equation (4.162), the role of φk comes into the update of the system state.

In fact, for each outcome zk+1, two evolutions of sk([z zk+1]) are possible, that

depend on φ = φk as indicated in (4.128) and (4.129). Therefore, four possible
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evolutions must be considered in evaluating (4.162), indicated with A, B, C and

D in equations (4.163)-(4.166). Since we want to maximize the probability of

correct decision, J∗
k (sk) is the maximum between these possibilities, as in (4.167).

Jk,A(sk, φ) = J∗
k+1(

sk+1([z̄k0̂])
︷ ︸︸ ︷

cos2(θ − φ)pm, cos
2(θ − φ)pM ,m ) + J∗

k+1(

sk+1([z̄k1̂])
︷ ︸︸ ︷

sin2(θ − φ)pm, sin
2(θ − φ)pM ,m ),

(4.163)

Jk,B(sk, φ) = J∗
k+1( cos

2(θ − φ)pm, cos
2(θ − φ)pM ,m ) + J∗

k+1( sin
2(θ + φ)pM , sin

2(θ − φ)pM , k + 1 ),

(4.164)

Jk,C(sk, φ) = J∗
k+1( cos

2(θ + φ)pM , cos
2(θ − φ)pM , k + 1 ) + J∗

k+1( sin
2(θ − φ)pm, sin

2(θ − φ)pM ,m ),

(4.165)

Jk,D(sk, φ) = J∗
k+1( cos

2(θ + φ)pM , cos
2(θ − φ)pM , k + 1 ) + J∗

k+1( sin
2(θ + φ)pM , sin

2(θ − φ)pM , k + 1 )

(4.166)

J∗
k (sk) = max

φ
{Jk,A(sk, φ), Jk,B(sk, φ), Jk,C(sk, φ), Jk,D(sk, φ)} (4.167)

π∗
k(sk) = argmax

φ
{Jk,AC(φ), Jk,AD(φ), Jk,BC(φ), Jk,BD(φ)} (4.168)

Along with the reward-to-go function, we define the function π∗
k that repre-

sents the optimal value of the control variable corresponding to the current system

state, φk = π∗
k(sk) to employ in the measurement k + 1 given that the outcome

sequence z̄k has been observed.

4.5.4 Dynamic Programming Algorithm

In the dynamic programming algorithm, we have to evaluate the reward-to-go

function at iteration k for each possible values of the system state sk. The expres-

sion of Jk depends on the variables pm, pM and not upon the particular sequence

z̄k. Therefore, in the following we drop the dependence of the system state from

z̄k.

The optimization algorithm to evaluate the performance of the adaptive re-

ceiver can be summarized by the following step by step procedure:
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1. Evaluate the reward-to-go function J∗
M−1 and the angle function π∗

M−1 for

each (pm, pM), pm + pM ≤ 1 as in (4.160) and (4.161).

2. From J∗
k+1, for each (pm, pM), pm+pM ≤ 1 evaluate J∗

k and π∗
k as in (4.167)

and (4.168) respectively.

3. For each (pm, pM), pm + pM ≤ 1, depending on the association A, B, C or

D of (4.163)-(4.166) used in the previous step, define the children nodes of

sk(zk) generated with outcome zk+1 = 0̂ and zk+1 = 1̂

children(sk) = {sk+1([z̄k0̂]), sk+1([z̄k1̂])} (4.169)

Note that in sk+1([z̄k0̂]) and in sk+1([z̄k1̂]) we can define m([z̄k0̂]) and

m([z̄k1̂]) only in the case it is equal to k+1, while in the case m([z̄kzk+1]) =

m(z̄k) we cannot assign an exact value, because m(z̄k) ∈ {1, . . . , k}. In-

stead, we can assign the label “previous” that indicates that it is a value

m ≤ k that will be defined in later iterations of the optimization.

4. Repeat step 2. and 3. for k =M − 1, . . . , 1.

5. Evaluate the angle in the first measurement and the performances of the

adaptive algorithm from s0 as

π∗
0 = argmax

φ
J∗
1

(
cos2(θ + φ)

M
,
cos2(θ − φ)

M
, 1

)

+ J∗
1

(
sin2(θ + φ)

M
,
sin2(θ − φ)

M
, 1

)

(4.170)

Pc = J∗
1

(
cos2(θ + π∗

0)

M
,
cos2(θ − π∗

0)

M
, 1

)

+ J∗
1

(
sin2(θ + π∗

0)

M
,
sin2(θ − π∗

0)

M
, 1

)

(4.171)

In order to reconstruct the binary tree angles and find the estimation region,

we need to retrace the optimization steps forward. In the following procedure,

two binary trees are built, one with nodes the system states sk and the other with

nodes corresponding to the angle φk. The levels k = 0, 1, . . . ,M − 1 of the trees
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represent the system state before k + 1-th measurement, the edges between the

nodes correspond to a measurement outcome zk = 0̂ or zk = 1̂. The path from

the root to the node gives the outcomes sequence.

In particular, retracing the path of the binary tree we can fill up the system

state substituting the labels “previous” with the correct symbol m(z̄k).

The construction of the binary trees is given by the following steps:

6. Define the initial system state s∅ as the root of the binary tree of the system

states.

7. Define φ0 = π∗
0(s0) as the root of the tree of the angles.

8. Define the children nodes of the system state s0, the one corresponding to

the outcome z1 = 0̂,

s1(0̂) =

(
cos2(θ + π∗

0)

M
,
cos2(θ − π∗

0)

M
, 1

)

, (4.172)

and the other corresponding to z1 = 1̂,

s1(1̂) =

(
sin2(θ + π∗

0)

M
,
sin2(θ − π∗

0)

M
, 1

)

. (4.173)

9. For each node sk(z̄k) of the level k in the binary angles tree, the angle

corresponding to the next measurement is

π∗
k(sk(z̄k)) (4.174)

and in the next level of the system state tree add sk+1([z̄k0̂]) and sk+1([z̄k1̂]),

replacing, if present, the label “previous” with the symbol m(sk(z̄k)).

10. Repeat step 9. for k = 2, . . . ,M − 1.

Once completed these trees, following the outcome sequence through the angle

tree we get the angle φk = πk(sk(z̄k)) to employ in the k+1-th measurement. The

region of estimation are defined in this way: if the sequence ends in zM = 1̂, it is

attributed to x̂ =M , otherwise for zM = 0̂ it is assigned to x̂ = m(sM−1(z̄M−1)).
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Figure 4.1: (Color online) Performances comparison of different receiver schemes,

for 2-PPM: classical direct detection, quantum theoretical limit and

adaptive scheme (overlapped), conditional nulling receiver, type I

improved conditional nulling scheme, type II improved conditional nulling

scheme.

4.6 Results and Numerical Issues

In the previous Section we described the algorithm to optimize the sequences of

angles φk used by the adaptive receiver. We run the optimization algorithm for

different cardinalities M of the PPM and for different values of the inner product

χ. For a fair comparison with respect to the other existing schemes, we compare

the performances of the receiver architectures on the base of mean photon number

in the coherent state |α〉, i.e. |α|2, obtained by inversion of (4.110).

A first result is that in the case of M = 2 this adaptive receiver reaches the

theoretical quantum limit. This is not surprising, because as already pointed out

in [28] in the case of binary discrimination of pure states an optimized sequence of

local measurements suffices to implement the POVM for the optimal discrimina-

tion. In Figure 4.1 the performances of the classical receiver, conditional nulling,

type I and type II schemes are compared with respect to the teoretical limit. The
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Figure 4.2: (Color online) Performances comparison of different receiver schemes,

for 3-PPM: classical direct detection, quantum theoretical limit,

adaptive scheme, retraced forward path, conditional nulling receiver,

type I improved conditional nulling scheme, type II improved condi-

tional nulling scheme.

performance of the adaptive receiver overlaps with the theoretical one.

As the cardinality M increases, the performance of the adaptive receiver

slightly moves away from the theoretical optimum. In Figure 4.2, 4.3 and 4.4

the performance of the existing receivers and the optimized adaptive one are

compared for M = 3, M = 4 and M = 8 respectively. The trend is the same in

all the figures: the adaptive scheme outperforms the existing conditional nulling,

type I and type II receiver, placing the error probability curves between these

and the theoretical limit. The adaptive scheme mantains the gap with respect

to type I and type II even around |α|2 = 2, where these schemes get close to the

conditional nulling performances. In addition, the performance of our scheme get

really close to the theoretical limit for low mean photon number.

The evaluation of the dynamic programming algorithm can be really demand-

ing, in particular the evaluation of J∗
k for all possible system states sk may require

a non trivial amount of computational time and memory. In addition, this eval-
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Figure 4.3: Performances comparison of different receiver schemes, for 4-PPM:

classical direct detection, quantum theoretical limit, adaptive

scheme, retraced forward path, conditional nulling receiver,

type I improved conditional nulling scheme, type II improved conditional

nulling scheme.
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uation must be repeated from k =M − 1 down to k = 1.

Since a numerical procedure is required to evalutate J∗
k at each step, the set

{(u, v), 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, u+ v ≤ 1} of the system state space Sk needs to be

discretized in a two dimensional grid. As a consequence, the search of the optimal

angles π∗
k in (4.168) and the evaluation of J∗

k in (4.167) requires to approximate

the system state sk+1 in the grid when considering J∗
k+1(sk+1). The issue of this

approximation spread out in successive evaluations of J∗
k , expecially in the case

of poorly discretized grid, where we encounter bad (even unfeasible) results for

high values of M and |α2|. In our optimization, we use a discretization with at

least a grid step of 10−3 for each side of the unit square that includes the set of

(u, v) in (4.122).

However, some considerations can be done in order to lighten the computation.

The first consideration is that for different cardinality M , the sequence of tables

J∗
k to be calculated are the same. This means that if we want to evaluate the

performances of the adaptive receiver for a PPM with cardinality M1 < M2 <

. . . < M̃ , we can calculate the table sequence J∗
M̃
, J∗

M̃−1
, . . . , J∗

1 for the maximum

cardinality M̃ . In evaluating the performances of the other modulation cardinality

Mi, we only need to start from a different initial system state, that is

s0 =

(
1

Mi

,
1

Mi

, ·
)

(4.175)

end evaluate the probability of correct decision as

Pc = max
φ

J∗
M̃−Mi+1

(
cos2(θ + φ)

Mi

,
cos2(θ − φ)

Mi

, 1

)

+

J∗
M̃−Mi+1

(
sin2(θ + φ)

Mi

,
sin2(θ − φ)

Mi

, 1

)

(4.176)

In addition, as already pointed out and proved in Lemma 4.3, before the k+1-

th measurement the joint probability of the M−k symbols x = k+1, k+2, . . . ,M

are the same. This means that considering the variables pm, pM of the system

state sk that define the entries of J∗
k , it results pM ≤ 1

M−k+1
, therefore reducing

the elements of the set {(u, v)} of Sk to evaluate in
{

(u, v), u+ v ≤ 1, 0 ≤ u ≤ 1, 0 ≤ v ≤ 1

M − k + 1

}

. (4.177)
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Furthermore, if we are interested in the performance for a single value of the

cardinality M , we can take advantage of Lemma 4.4 in Appendix 4.5.2. Since the

elements pm and pM are joint probabilities of symbols with the outcome sequence,

and since they start from the value 1/M , we can restrict the grid to evaluate for

table J∗
k to consider only the set

{

(u, v), 0 ≤ u ≤ 1

M
, 0 ≤ v ≤ 1

M

}

. (4.178)

In order to understand the consequence of the approximation of the system

state space Sk, we check the performances of the dynamic programming retracing

all the angles path for each measurement, evaluating the final joint probabilities

and calculating the probability of correct decision as the sum in (4.151). Due

to the discretization of Sk as a grid, the performance obtained retracing the an-

gles tree can be slightly different with respect to the performances of dynamic

programming. The performances of this forward path retracing are depicted in

Figures 4.1, 4.2, 4.3 and 4.4 in a blue dashed line. As you can see, for lower car-

dinality it coincides with the prediction, but the gap spreads out as M increases,

expecially for high |α|2 (see for example Figure 4.3).

In Figure 4.4, we managed to keep the performances of the forward retracing

close to the predicted one for M = 8 by discretizing the grid [0, 1/8] × [0, 1/8]

with a grid step of 10−3.

4.7 Conclusion

In the present work we have studied the design of quantum receivers for Pulse

Position Modulation.

By the PPM signal structure, we could describe the overall transmitted quan-

tum states in the symbol time interval as sequences of quantum states in shorter

temporal slots in a tensorial product. The signal measurement is then reformu-

lated as a sequence of shorter measurements, one in each slot, that allows to

design adaptive receiver scheme.
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Figure 4.4: (Color online) Performances comparison of different receiver schemes,

for 8-PPM: classical direct detection, quantum theoretical limit,

adaptive scheme, retraced forward path, conditional nulling receiver,

type I improved conditional nulling scheme, type II improved condi-

tional nulling scheme.
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We move to an isomorphic representation of the quantum states in terms of

qubits. The description of the existing receiver architecture in this framework

highlights the limitations in terms of outcomes probabilities. We propose a more

general adaptive receiver structure, where the measurement in each slot is a

function of all the previous outcomes and the time evolving joint probabilities

of the symbols with the outcomes sequence.

We propose an optimization of such adaptive scheme by means of dynamic

programming, providing a description of the algorithm to evaluate the perfor-

mance of the adaptive receiver and to calculate the measurement in each slot.

The probability of error, although it does not reach the theoretical quantum

limit except for M > 2, significantly outperforms the existing receiver schemes.

As a concluding remark, adaptive receiver seem to be the way to follow to

achieve better performances for communication purpose, thanks to the possi-

bility to embed the information of previous outcomes and improve subsequent

measurements.
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Appendix

4.A Review of Dynamic Programming

In this Section we introduce the (discrete time) dynamic programming framework

and its basic algorithm. For a more detailed review, see [30].

Consider a discrete time dynamic system described by the update equation

sk+1 = fk(sk, uk, wk), k = 0, . . . , N − 1, (4.179)

with given initial system state s0, where

• k is the step index corresponding to the time.

• sk ∈ Sk is the system state, that is the collection of past informations up to

time k useful to describe the evolution of the system and relevant for the

optimization problem. To avoid misunderstanding, in the following we will

use the term system state and quantum state, to discriminate the description

of a system as in (4.179) and the physical description given by the density

operator.

• uk ∈ Uk is the control, that is the physical variable or quantity we can use

to drive the system evolution. Since we can impose the vale of uk in order

to control the system, it is not described by a random variable.

• wk ∈ Wk is a random parameter out of our control, sometimes referred to

as disturbance or noise. It can be related to sk and uk, i.e. its probability

description can depend upon sk and uk as in P [·|sk, uk].

137
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A reward function 4 is associated with the system evolution, that in our case

we can write as

g(sN), (4.180)

and depends upon the final system state sN . Since the evolution (4.179) is in-

fluenced by the random variables w0, . . . , wN−1, the final system state sN is a

random variable and the reward function we want to maximize is

E
sN

[g(sN)] =

∫

SN

dσ g(σ)℘sN (σ), (4.181)

where with the notation ℘r(·) we indicate the probability density function of the

random variable r, in this case the system state sN .

Considering the update equation (4.179) for k = N − 1, the reward function

can be rewritten as

E
sN−1,wN−1

[g(fN−1(sN−1, uN−1, wN−1))] =

=

∫

SN−1

dρ

∫

WN−1

dω g(σ) ℘sN−1,wN−1
(ρ, ω). (4.182)

with the system state sN = σ evaluated from the evolution σ = fN−1(ρ, uk, ω).

By (4.179) we can continue the substitutions backward in time to obtain a

reformulation of the reward function (4.181) in terms of the controls and the

initial system state s0,

∫

W0

dw0 · · ·
∫

WN−1

dwN−1 g(σ) ℘w0,...,wN−1
(ω0, . . . , ωN−1) (4.183)

with sN = σ obtained by the composition of the update equations fN−1, fN−2, . . . , f0

from s0 with the variables u0, . . . , uN−1, w0 = ω0, . . . , wN−1 = ωN−1.

Seeking the maximization of (4.183), we can employ different strategies. For

example, the values of the control u0, . . . , uN−1 can be determined before the

4Dynamic programming is usually formulated for a minimum optimization problem, but in

our case a maximization problem is more suitable since we aim at maximize the probability of

correct decision. Therefore, we introduce the concepts of reward and reward-to-go function in

place of cost and cost-to-go function.
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system starts, and then applied during the evolution, or we can postpone the

choice of uk at time k since there’s no penalties in delaying the decision. In

particular, this latter strategy allows to define uk as a function of the system

state sk,

uk = πk(sk), sk ∈ Sk, uk ∈ Uk, (4.184)

leading to an adaptive control algorithm. Its performance are not worse than the

fixed control, and we can take advantage of the information gained from time 0

to k.

The set of functions π̄ = (π0, π1, . . . , πN−1) is called a policy. We can define

the expected reward considering the current system state, the current input and

the policy for the future inputs at time step k = 0, . . . , N − 1 as the function

Jk : Sk × Uk × Πk+1 × . . .× ΠN−1 7−→ R (4.185)

specified as

Jk (σ, ν, πk+1, . . . , πN−1) =
∫

Wk

dwk · · ·
∫

WN−1

dwN−1 g(σ) ℘sk,wk,...,wN−1
(ρ, ωk, . . . , ωN−1) (4.186)

with Πk = USk

k the set of all possible functions πk : Sk 7→ Uk, and sN = σ the

system state calculated with the composition of fN−1, . . . , fk employing sk = ρ,

uk = ν, uk+1 = πk+1(sk+1), . . . , uN−1 = πN−1(sN−1).

Note that integrating (4.186) with respect to sk,

∫

Sk

dσ Jk (σ, ν, πk+1, . . . , πN−1) (4.187)

we can define a reward-to-go function at time k from sk, which uses uk = ν, uk+1 =

πk+1(sk+1), . . . , uN−1 = πN−1(sN−1).

Define π̄∗ =
(
π∗
0, π

∗
1, . . . , π

∗
N−1

)
the optimal policy, that is the one that maxi-

mize J0

π̄∗ := argmax
π̄

J0(s0, π̄(s0)), (4.188)
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and define

J∗
0 (s0) := J0(s0, π̄

∗(s0)) (4.189)

the optimal reward from s0.

The dynamic programming algorithm relies on the following rather obvious

idea.

Principle of Optimality [30]

Let π̄∗ =
(
π∗
0, π

∗
1, . . . , π

∗
N−1

)
be the optimal policy that maximizes the reward J0

and let s1, s2, . . . , sN be the corresponding system state evolution. Consider the

subproblem of the maximization of the reward-to-go function from time k,

max
πk,...πN−1

∫

Sk

dσ Jk(σ, πk(σ), . . . , πN−1) (4.190)

The optimal policy for this subproblem is the truncated sequence
(
π∗
k, π

∗
k+1, . . . , π

∗
N−1

)
.

The maximization of J0 with respect to the policy (π0, . . . , πN−1) with multi-

variate calculus requires the solution of a complicated system with equations in

all the variables πk. Instead, the dynamic programming algorithm decomposes

the main problem into a sequence of subproblems.

Dynamic Programming Algorithm [30]

The optimal reward J∗
0 is the last step of the following algorithm, which proceeds

backwards from N to 0,

1. define the initial condition

J∗
N(σ) = g(σ), σ ∈ SN (4.191)

2. for k = N − 1, . . . , 0, for all σ ∈ Sk evaluate the optimal control and the

optimal expected reward function at time k, namely

π∗
k(σ) = argmax

ν∈Uk

Jk(σ, ν, π
∗
k+1, . . . , π

∗
N−1) (4.192)

= argmax
ν∈Uk

∫

Wk

dω J∗
k+1(fk(σ, ν, ω)), (4.193)

J∗
k (σ) = Jk

(
σ, π∗

k(σ), π
∗
k+1, . . . , π

∗
N−1

)
. (4.194)
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3. the optimal reward and the optimal policy are

J∗
0 (s0) = J0(s0, π

∗
0(s0), . . . , π

∗
N−1), (4.195)

π̄∗ =
(
π∗
0, π

∗
1, . . . , π

∗
N−1

)
. (4.196)

At each step k, assuming to know by induction the optimal policy
(
π∗
k+1, . . . , π

∗
N−1

)

and the optimal reward J∗
k+1(·), the algorithm considers sk = σ as the initial sys-

tem state for the time evolution from k to N , and maximize with respect to the

control uk = ν. This maximization is solved for every possible sk ∈ Sk, in order

to define the function π∗
k(sk) and the optimal reward J∗

k (sk). This step is repeated

until k = 0. Note that at each step, only one control variable uk is involved in

the maximization, simplifying its optimization.
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Chapter 5

Conclusions

We have considered the scenario of communication of classical information through

quantum medium and described the transmission and detection task of a commu-

nication system as a discrimination problem in the set of the possible quantum

states sent.

The transmitter encodes the message in a sequence of quantum states, each

one described by a density matrix in the set

ρx ∈ {ρ1, ρ2, ρ3, . . . , ρM}. (5.1)

The channel interposed between transmitter and receiver modifies the transmitted

density operator ρx, and the output density operator ρ̃x can be described by a

Completely Positive Trace Preserving linear map E : ρx 7→ ρ̃x that acts as in

ρ̃x =
∑

k

E†
kρxEk. (5.2)

The receiver performs a measurement on the density operator ρ̃x in order to

discriminate the original quantum states, indicated by x, as best as possible.

This is evaluated through some figures of merit for the communication, that

may be the probability of correct decision or the capacity of the system. The

Positive Operator Values Measurement defining the measurement must therefore

be optimized in order to maximize the performances.
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In Chapter 2 we first study the problem of implementing binary communi-

cation with coherent states and Binary Phase Shift Keying modulation. In this

case, the two possible quantum states transmitted are

|γx〉 =
∣
∣eixπα

〉
, x = 0, 1. (5.3)

Optimal discrimination performance in terms of probability of correct detection,

as predicted by the quantum discrimination theory, gives the Helstrom bound

P (Helstrom)
c =

1

2

[

1 +
√

1− 4p0p1χ2
]

, (5.4)

with χ = 〈−α|α〉 = e−2|α|2 the inner product of the quantum states (5.3).

Several receiver schemes have been proposed for this modulation: the Homo-

dyne detection, the Kennedy receiver, the Generalized Kennedy receiver and the

Dolinar scheme, but only the last one achieves the Helstrom limit precisely.

We reformulate this scheme in a multiple-copies framework. Rather that con-

sidering the coherent state |γx〉 of duration T , we virtually divide the time interval

in N sub-intervals such that the whole quantum states is the composition of N

weaker states in a tensor products,

|γx〉 =
∣
∣
∣
∣
eixπ

α√
N

〉 ∣
∣
∣
∣
eixπ

α√
N

〉

· · ·
∣
∣
∣
∣
eixπ

α√
N

〉

, x = 0, 1. (5.5)

The original discrimination problem becomes the discrimination between two co-

herent states from the observation of multiple copies of them. Since in the case of

two pure states, an adaptive strategy of local measurement on the single copies

with a bayesian update on successive measurements suffices to reach the mini-

mum error probability, we apply the same result for the multiple copy coherent

discrimination. As N goes to infinity, the adaptive strategy coincides with the

Dolinar receiver.

In addition, with the same theory we investigate the performance of a simpli-

fied version of the Dolinar receiver, using a displacement that is constant in time

rather than the time varying receiver required by the Dolinar’s. Although result-

ing in suboptimal performances, this architecture is much simpler to implement

and still outperforms other near optimal receiver schemes.
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In Chapter 3, we study the degrading action of the channel on the transmitted

quantum states. We consider a given description of a general qubit channel, and

seek for the optimal binary input states and output measurements that define a

classical binary channel.

We consider both the error probability and the capacity of the binary channel

as figures of merit for the optimization. In particular, since both functionals can

be defined on the induced transition probability, we focus on the characterization

of region of the admissible transition probabilities.

We first introduce partial orderings for the binary channels, that allow us

to prove that the optimal POVM are projectors, for both functionals. Then,

leveraging the coherence vector representation of the qubit states and channels,

we are able to find necessary conditions on the optimal transmitted input states,

which must be orthogonal.

Including this conditions in the optimization problem, we are able to find the

region of admissible transition probabilities. This is shown to be a quadratic prob-

lem with quadratic constaints, and therefore solvable with standard numerical

methods. A particularly suitable numerical procedure for the quadratic problem

is given.

For the maximization of the channel capacity, a two step procedure is given.

The “inner” maximization with respect to the a priori probability admits a closed-

form solution that can be used to simplify optimization with respect to the tran-

sition probability. The “outer” maximization with respect to the transition prob-

ability relies on the numerical optimization used to find the boundary of the

admissible transition probability region.

For the minimization of the error probability, a closed form solution for the

optimization is obtained, recovering previous results by discrimination theory.

Numerical results as well as qualitative analysis of the contour plots of the

functionals suggest that, even if typically the solutions for the two functionals

exhibit are very close, considerable differences can emerge in particular cases,

depending on the curvature of the boundaries of the admissible transition prob-
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abilities.

In Chapter 4, we consider a more complex modulation format. Pulse Position

Modulation is a suitable candidate for the satellite and deep space communica-

tions, and several studies have investigated its performance for a communication

link both theoretically and experimentally.

Pulse Position Modulation defines the quantum state to transmit (5.3) as the

tensor product of M coherent states, all in the vacuum state except the one in

the x-th position.

The theoretical limit for the performance of PPM in terms of error probability

is known by means of Quantum Discrimination Theory, exploiting the Geometric

Uniform Symmetry through the least square measurement.

Many receiver schemes have been proposed to approach such limit: the clas-

sical receiver, the Dolinar PPM receiver, and its improved versions by Guha et

al.

We reformulate the PPM discrimination problem in a qubit framework, and

we review these schemes in this representation. These receivers employ local

measurements in each sub-interval, and use an adaptive strategy to choose which

measurements perform in successive time slots.

However, all these existing architectures present some limitation in both the

local measurements and in the adaptive strategy. The local measurements are

performed with a combination of (constant) displacement, phase amplification

and photon counting, and in the adaptive strategy the next measurement in

decided from the previous results.

On the contrary, we consider a more general adaptive receiver, allowing for the

a general projective measurement in the sub-intervals and an adaptive strategy

where the measurements depends upon all the previous outcomes. The resulting

receiver depends on a set of parameter that increase exponentially in the cardinal-

ity M . In order to perform an optimization on these parameters that has limited

complexity, we use dynamic programming, and define both the optimization and

the receiver algorithm.
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We evaluate the performance of this receiver for different cardinality M and

different values of the average number of photons in the coherent state of the

PPM. In particular, we focus on the region of weak values of coherent states,

that simulates a high loss in the communication link or a transmission with weak

pulses.

Due to the greater generality of the scheme, the optimized adaptive architec-

ture outperforms all the other existing receivers. In the case of M = 2 the receiver

precisely achieves the Helstrom bound, confirming the known result that in the

binary case an adaptive receiver with local measurements suffices to achieve the

quantum limit. For other values of M , the error probability sligthly moves away

from the quantum limit, but still outperforms the other receivers.

In conclusion, the challenges proposed by the discrimination problem in the

communication scenario have been investigated with particular attention to the

optimization process for the definition of the measurement operators. Adaptive

receivers seem to be the way to follow to achieve better performances for com-

munication purposes, due to the possibility to embed the information of previous

outcomes in the choice of successive measurements.
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Corrections for

RECEIVER DESIGN FOR QUANTUM

COMMUNICATION

Nicola Dalla Pozza

September 16, 2013

The following are corrections to known errata within Receiver Design for Quantum Commu-

nication.

Page 25, eq. 1.19. Missing channel action on the quantum state.
ERRATUM:

= tr (Pjρk) (1.19)

(if ρk is a pure state) = 〈γk|Pj |γk〉.

CORRIGE:

= tr (Pj ρ̃k) (1.19)

(if ρ̃k is a pure state) = 〈γ̃k|Pj |γ̃k〉.

Page 28, line 7 from bottom. Typo.
ERRATUM: “A reader interested in the transmission of quantum information can found a

brief introduction . . . ”
CORRIGE: “A reader interested in the transmission of quantum information can find a brief

introduction . . . ”

Page 28, line 7 from bottom. Missing definition of σi. Add the line

where {σi} are the singular values of the decomposition of Γ.

after eq. (4.41) and the sentence “For a proof of the proposition, see [55, 56, 25].”

Page 116, repeated paragraph. The last paragraph of page 114, which ends at page 116,
is repeated as the first paragraph at page 116. The correct section reference is not “. . . next
Section.” but “. . . Appendix 4.A”.
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Page 129, figure 4.1. Wrong graphic.
CORRIGE:
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Figure 4.1: Performances comparison of different receiver schemes, for 2-PPM: classical
direct detection, quantum theoretical limit and adaptive scheme (overlapped), condi-
tional nulling receiver, type I improved conditional nulling scheme, type II improved
conditional nulling scheme.

Page 130, figure 4.2. Wrong graphic.
CORRIGE:
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Figure 4.2: Performances comparison of different receiver schemes, for 3-PPM: classical
direct detection, quantum theoretical limit, adaptive scheme, retraced forward
path, conditional nulling receiver, type I improved conditional nulling scheme,
type II improved conditional nulling scheme.
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Page 131, figure 4.3. Wrong graphic.
CORRIGE:
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Figure 4.3: Performances comparison of different receiver schemes, for 4-PPM: classical
direct detection, quantum theoretical limit, adaptive scheme, retraced forward
path, conditional nulling receiver, type I improved conditional nulling scheme,
type II improved conditional nulling scheme.

Page 134, figure 4.4. Wrong graphic.
CORRIGE:
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Figure 4.4: Performances comparison of different receiver schemes, for 8-PPM: classical
direct detection, quantum theoretical limit, adaptive scheme, retraced forward
path, conditional nulling receiver, type I improved conditional nulling scheme,
type II improved conditional nulling scheme.

3


	Introduction
	Classical vs quantum communication paradigm
	Deep Space scenario
	Capacity improvements by Quantum Mechanics
	Communication System Scenario
	Classical Communication over Quantum Channel

	Capacity of a Quantum Channel
	Summary of the Results

	Binary Quantum Receivers
	Introduction
	Binary modulation implementations

	Kennedy Receiver
	Improved Kennedy Receiver
	Multiple Copy State Discrimination
	Revisiting the Dolinar receiver
	A simple suboptimal receiver

	Optimal Encoding and Decoding over Noisy Qubit Channels
	Introduction
	Error Probability
	Capacity

	Partial orderings for classical binary channels
	Coherence Vector Representation and Geometric Picture 
	Optimization of input states for given projectors
	Region of achievable transition probabilities

	Optimization and Numerical Methods
	Probability of correct decision
	Capacity

	Examples

	Appendices
	Proof of the necessary condition for optimality
	Quadratic Optimization Problems with Quadratic Constraints

	Quantum Receivers for Pulse Position Modulation
	Introduction to Pulse Position Modulation
	Optimal Performance 
	Geometrically Uniform Symmetry
	Least Square Measurements
	Least Square Measurements and Geometric Uniform Symmetry
	Theoretical Limit Performances of PPM

	Existing Receiver Schemes for PPM
	Classical Receivers
	Unconditional Nulling Receiver
	Conditional Nulling Receiver
	Improved Conditional Nulling Receiver

	Qubit Framework Representation
	An Adaptive Receiver for PPM
	State of the Algorithm
	 Useful Lemmas
	Expected reward function
	Dynamic Programming Algorithm

	Results and Numerical Issues
	Conclusion

	Appendices
	Review of Dynamic Programming

	Conclusions



