1,156 research outputs found

    Real-time prediction of breast lesions displacement during Ultrasound scanning using a position-based dynamics approach.

    Get PDF
    Although ultrasound (US) images represent the most popular modality for guiding breast biopsy, they are sometimes unable to render malignant regions, thus preventing accurate lesion localization which is essential for a successful procedure. Biomechanical models can support the localization of suspicious areas identified on a pre-operative image during US scanning since they are able to account for anatomical deformations resulting from US probe pressure. We propose a deformation model which relies on position-based dynamics (PBD) approach to predict the displacement of internal targets induced by probe interaction during US acquisition. The PBD implementation available in NVIDIA FleX is exploited to create an anatomical model capable of deforming in real-time. In order to account for each patient\u2019s specificities, model parameters are selected as those minimizing the localization error of a US-visible landmark of the anatomy of interest (in our case, a realistic breast phantom). The updated model is used to estimate the displacement of other internal lesions due to probe-tissue interaction. The proposed approach is compared to a finite element model (FEM), generally used in breast biomechanics, and a rigid one. Localization error obtained when applying the PBD model remains below 11 mm for all the tumors even for input displacements in the order of 30 mm. The proposed method obtains results aligned with FE models with faster computational performance, suitable for real-time applications. In addition, it outperforms rigid model used to track lesion position in US-guided breast biopsies, at least halving the localization error for all the displacement ranges considered. Position-based dynamics approach has proved to be successful in modeling breast tissue deformations during US acquisition. Its stability, accuracy and real-time performance make such model suitable for tracking lesions displacement during US-guided breast biopsy

    A position-based framework for the prediction of probe-induced lesion displacement in Ultrasound-guided breast biopsy

    Get PDF
    Although ultrasound (US) images represent the most popular modality for guiding breast biopsy, they are sometimes unable to render malignant regions, thus preventing accurate lesion localization which is essential for a successful procedure. Biomechanical models can support the localization of suspicious areas identified on a pre-operative image during US scanning since they are able to account for anatomical deformations resulting from US probe pressure. We propose a deformation model which relies on position-based dynamics (PBD) approach to predict the displacement of internal targets induced by probe interaction during US acquisition. The PBD implementation available in NVIDIA FleX is exploited to create an anatomical model capable of deforming online. Simulation parameters are initialized on a calibration phantom under different levels of probe-induced deformations, then they are fine-tuned by minimizing the localization error of a US-visible landmark of a realistic breast phantom. The updated model is used to estimate the displacement of other internal lesions due to probe-tissue interaction. The localization error obtained when applying the PBD model remains below 11 mm for all the tumors even for input displacements in the order of 30 mm. This approach outperforms rigid model used to track lesion position in US-guided breast biopsies, at least halving the localization error for all the displacement ranges considered. Position-based dynamics approach has proved to be successful in modeling breast tissue deformations during US acquisition. Its stability, accuracy and real-time performance make such model suitable for tracking lesions displacement during US-guided breast biopsy

    Hygroscopic and chemical characterisation of Po Valley aerosol

    Get PDF
    Continental summer-time aerosol in the Italian Po Valley was characterised in terms of hygroscopic properties and the influence of chemical composition therein. Additionally, the ethanol affinity of particles was analysed. The campaign-average minima in hygroscopic growth factors (HGFs, at 90% relative humidity) occurred just before and during sunrise from 03:00 to 06:00 LT (all data are reported in the local time), but, more generally, the hygroscopicity during the whole night is very low, particularly in the smaller particle sizes. The average HGFs recorded during the low HGF period were in a range from 1.18 (for the smallest, 35nm particles) to 1.38 (for the largest, 165 nm particles). During the day, the HGF gradually increased to achieve maximum values in the early afternoon hours 12:00–15:00, reaching 1.32 for 35 nm particles and 1.46 for 165 nm particles. Two contrasting case scenarios were encountered during the measurement period: Case 1 was associated with westerly air flow moving at a moderate pace and Case 2 was associated with more stagnant, slower moving air from the north-easterly sector. Case 1 exhibited weak diurnal temporal patterns, with no distinct maximum or minimum in HGF or chemical composition, and was associated with moderate non-refractory aerosol mass concentrations (for 50% size cut at 1 ÎŒ) of the order of 4.5 ÎŒg m<sup>−3</sup>. For Case 1, organics contributed typically 50% of the mass. Case 2 was characterised by >9.5 ÎŒg m<sup>−3</sup> total non-refractory mass (<1 ÎŒ) in the early morning hours (04:00), decreasing to ~3 ÎŒg m<sup>−3</sup> by late morning (10:00) and exhibited strong diurnal changes in chemical composition, particularly in nitrate mass but also in total organic mass concentrations. Specifically, the concentrations of nitrate peaked at night-time, along with the concentrations of hydrocarbon-like organic aerosol (HOA) and of semi-volatile oxygenated organic aerosol (SV-OOA). In general, organic growth factors (OGFs) followed a trend which was opposed to HGF and also to the total organic mass as measured by the aerosol mass spectrometer. The analysis of the HGF probability distribution function (PDF) reveals an existence of a predominant "more hygroscopic" (MH) mode with HGF of 1.5 around noon, and two additional modes: one with a "less hygroscopic" (LH) HGF of 1.26, and another with a "barely hygroscopic" (BH) mode of 1.05. Particles sized 165 nm exhibited moderate diurnal variability in HGF, ranging from 80% at night to 95% of "more hygroscopic" growth factors (i.e. HGFs 1.35–1.9) around noon. The diurnal changes in HGF progressively became enhanced with decreasing particle size, decreasing from 95% "more hygroscopic" growth factor fraction at noon to 10% fraction at midnight, while the "less hygroscopic" growth factor fraction (1.13–1.34) increased from 5% at noon to > 60% and the "barely hygroscopic" growth factor fraction (1.1–1.2) increased from less than 2% at noon to 30% at midnight. Surprisingly, the lowest HGFs occurred for the period when nitrate mass reached peak concentrations (Case 2). We hypothesised that the low HGFs of nitrate-containing particles can be explained by a) an organic coating suppressing the water-uptake, and/or by b) the existence of nitrates in a less hygroscopic state, e.g. as organic nitrates. The latter hypothesis allows us to explain also the reduced OGFs observed during the early morning hours (before dawn) when nitrate concentrations peaked, based on the evidence that organic nitrates have significant lower ethanol affinity than other SV-OOA compounds

    Position-based simulation of deformations for autonomous robotic ultrasound scanning

    Get PDF
    Realistic and fast simulation of anatomical deformations due to ultrasound probe pressure is of outstanding importance for testing and validation of autonomous robotic ultrasound systems. We propose a deformation model which relies on the position-based dynamics (PBD) approach to simulate the probetissue interaction and predict the displacement of internal targets during US acquisition. Performances of the patient-specific PBD anatomical model are evaluated in comparison to two different simulations relying on the traditional finite element (FE) method, in the context of breast ultrasound scanning. Localization error obtained when applying the PBD model remains below 11 mm for all the tumors even for input displacements in the order of 30 mm. The proposed method is able to achieve a better trade-off among accuracy, computation time and generalization capabilities with respect to the two FE models. Position-based dynamics approach has proved to be successful in modeling breast tissue deformations during US acquisition. It represents a valid alternative to classical FE methods for simulating the interaction between US probe and tissues

    Role of endothelin-1 system in the luteolytic process of pseudopregnant rabbits

    Get PDF
    The aim of this study was to better understand the role of the endothelin-1 (ET-1) system in the process of controlling the corpora lutea (CL) life span in rabbits. ET-1 (10 mug iv) administration at d 9 and 12 of pseudopregnancy induced a functional luteolysis within 24 h of injection, but it was ineffective at both d 4 and 6. Pretreatments with Bosentan, a dual ETA/ETB receptor antagonist, or cyclooxygenase ( COX) inhibitor blocked the luteolytic action of ET-1 but not that induced by prostaglandin F-2alpha (PGF(2alpha)). In CL cultured in vitro, ET-1 increased (P less than or equal to 0.01) both PGF(2alpha) production and luteal nitric oxide synthase activity but decreased (P less than or equal to 0.01) progesterone release. Addition of ETA receptor antagonist BQ123 or COX inhibitor blocked the ET-1 luteolytic effects. Positive staining for ET-1 receptors was localized in ovarian blood vessels, granulosa cells of large follicles, and luteal cells. Immunoblot analysis of ET-1 receptor protein revealed a strong band of approximately 48 kDa in d-9 CL. Up to d 6 of pseudopregnancy, ET-1 mRNA abundance in CL was poorly expressed but then increased (P less than or equal to 0.01) at d 9 and 13. ETA-receptor transcript increased (P less than or equal to 0.01) at d 6, remained at the same level up to d 13, and then declined to the lowest (P less than or equal to 0.01) levels at d 22. ETB-receptor mRNA increased (P less than or equal to 0.01) throughout the late-luteal stage from d 13 up to d 18. Our data suggest that the luteolytic action of ET-1 may be a result of PGF(2alpha) synthesis from both luteal and accessory cells, via the COX pathways

    A dominant magnetic dipole for the evolved Ap star candidate EK Eridani

    Full text link
    EK Eri is one of the most slowly rotating active giants known, and has been proposed to be the descendant of a strongly magnetic Ap star. We have performed a spectropolarimetric study of EK Eri over 4 photometric periods with the aim of inferring the topology of its magnetic field. We used the NARVAL spectropolarimeter at the Bernard Lyot telescope at the Pic du Midi Observatory, along with the least-squares deconvolution method, to extract high signal-to-noise ratio Stokes V profiles from a timeseries of 28 polarisation spectra. We have derived the surface-averaged longitudinal magnetic field Bl. We fit the Stokes V profiles with a model of the large-scale magnetic field and obtained Zeeman Doppler images of the surface magnetic strength and geometry. Bl variations of up to about 80 G are observed without any reversal of its sign, and which are in phase with photometric ephemeris. The activity indicators are shown to vary smoothly on a timescale compatible with the rotational period inferred from photometry (308.8 d.), however large deviations can occur from one rotation to another. The surface magnetic field variations of EK Eri appear to be dominated by a strong magnetic spot (of negative polarity) which is phased with the dark (cool) photometric spot. Our modeling shows that the large-scale magnetic field of EK Eri is strongly poloidal. For a rotational axis inclination of i = 60{\deg}, we obtain a model that is almost purely dipolar. In the dipolar model, the strong magnetic/photometric spot corresponds to the negative pole of the dipole, which could be the remnant of that of an Ap star progenitor of EK Eri. Our observations and modeling conceptually support this hypothesis, suggesting an explanation of the outstanding magnetic properties of EK Eri as the result of interaction between deep convection and the remnant of an Ap star magnetic dipole.Comment: 8 pages, 6 figures, accepted for publication in Astronomy & Astrophysic

    How a spin-glass remembers. Memory and rejuvenation from intermittency data: an analysis of temperature shifts

    Full text link
    The memory and rejuvenation aspects of intermittent heat transport are explored theoretically and by numerical simulation for Ising spin glasses with short-ranged interactions. The theoretical part develops a picture of non-equilibrium glassy dynamics recently introduced by the authors. Invoking the concept of marginal stability, this theory links irreversible `intermittent' events, or `quakes' to thermal fluctuations of record magnitude. The pivotal idea is that the largest energy barrier b(tw,T)b(t_w,T) surmounted prior to twt_w by thermal fluctuations at temperature TT determines the rate rq∝1/twr_q \propto 1/t_w of the intermittent events occurring near twt_w. The idea leads to a rate of intermittent events after a negative temperature shift given by rq∝1/tweffr_q \propto 1/t_w^{eff}, where the `effective age' tweff≄twt_w^{eff} \geq t_w has an algebraic dependence on twt_w, whose exponent contains the temperatures before and after the shift. The analytical expression is verified by numerical simulations. Marginal stability suggests that a positive temperature shift T→Tâ€ČT \to T' could erase the memory of the barrier b(tw,T)b(t_w,T). The simulations show that the barrier b(tw,Tâ€Č)≄b(tw,T)b(t_w,T') \geq b(t_w,T) controls the intermittent dynamics, whose rate is hence rq∝1/twr_q \propto 1/t_w. Additional `rejuvenation' effects are also identified in the intermittency data for shifts of both signs.Comment: Revised introduction and discussion. Final version to appear in Journal of Statistical Mechanics: Theory and Experimen

    Solar-like oscillations in the G2 subgiant beta Hydri from dual-site observations

    Full text link
    We have observed oscillations in the nearby G2 subgiant star beta Hyi using high-precision velocity observations obtained over more than a week with the HARPS and UCLES spectrographs. The oscillation frequencies show a regular comb structure, as expected for solar-like oscillations, but with several l=1 modes being strongly affected by avoided crossings. The data, combined with those we obtained five years earlier, allow us to identify 28 oscillation modes. By scaling the large frequency separation from the Sun, we measure the mean density of beta Hyi to an accuracy of 0.6%. The amplitudes of the oscillations are about 2.5 times solar and the mode lifetime is 2.3 d. A detailed comparison of the mixed l=1 modes with theoretical models should allow a precise estimate of the age of the star.Comment: 13 pages, 14 figures, accepted by ApJ. Fixed minor typo (ref to Fig 14

    Gold nanoparticles approach to detect chondroitin sulphate and hyaluronic acid urothelial coating

    Get PDF
    This study investigated the location of hyaluronic acid (HA)-and chondroitin sulphate (CS)-coated gold nanoparticles in rabbit bladder and evaluated gene expression of CD44, RHAMM and ICAM-1 receptors involved in HA and CS transport into the cell. Gold nanoparticles were synthesised by reduction of gold salts with HA or CS to form HA-AuNPs and CS-AuNPs. Bladder samples were incubated with CS-AuNPs and HA-AuNPs or without glycosaminoglycans. Transmission electron microscopy, optic microscopy and scanning electron microscopy were used to determine the location of the synthesised AuNPs. Real-time PCR was used to analyse expression of urothelial cell receptors CD44, RHAMM, ICAM-1, after ex vivo administration of CS-AuNPs and HA-AuNPs. We showed that HA-AuNPs and CS-AuNPs were located in the cytoplasm and tight junctions of urothelial umbrella cells; this appearance was absent in untreated bladders. There were no significant differences in gene expression levels for CD44, RHAMM and ICAM-1 receptors in treated versus control bladder tissues. In conclusion, we clearly showed the presence of exogenous GAGs in the bladder surface and the tight junctions between umbrella cells, which is important in the regeneration pathway of the urothelium. The GAGs-AuNPs offer a promising approach to understanding the biophysical properties and imaging of urothelial tissue
    • 

    corecore