32 research outputs found

    Convenient and Sensitive Measurement of Lactosylceramide Synthase Activity Using Deuterated Glucosylceramide and Mass Spectrometry

    Get PDF
    Lactosylceramide is necessary for the biosynthesis of almost all classes of glycosphingolipids and plays a relevant role in pathways involved in neuroinflammation. It is synthesized by the action of galactosyltransferases B4GALT5 and B4GALT6, which transfer galactose from UDP-galactose to glucosylceramide. Lactosylceramide synthase activity was classically determined in vitro by a method based on the incorporation of radiolabeled galactose followed by the chromatographic separation and quantitation of the product by liquid scintillation counting. Here, we used deuterated glucosylceramide as the acceptor substrate and quantitated the deuterated lactosylceramide product by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). We compared this method with the classical radiochemical method and found that the reactions have similar requirements and provide comparable results in the presence of high synthase activity. Conversely, when the biological source lacked lactosylceramide synthase activity, as in the case of a crude homogenate of human dermal fibroblasts, the radiochemical method failed, while the other provided a reliable measurement. In addition to being very accurate and sensitive, the proposed use of deuterated glucosylceramide and LC-MS/MS for the detection of lactosylceramide synthase in vitro has the relevant advantage of avoiding the costs and discomforts of managing radiochemicals

    Carcinoembryonic antigen is a sialyl Lewis x/a carrier and an E‑selectin ligand in non‑small cell lung cancer

    Get PDF
    LPCC/Pfizer 2011. Tagus TANK award 2018 (grant no. 1/2018). SFRH/BD/100970/2014 SFRH/BPD/108686/2015The formation of distant metastasis resulting from vascular dissemination is one of the leading causes of mortality in non-small cell lung cancer (NSCLC). This metastatic dissemination initiates with the adhesion of circulating cancer cells to the endothelium. The minimal requirement for the binding of leukocytes to endothelial E-selectins and subsequent transmigration is the epitope of the fucosylated glycan, sialyl Lewis x (sLex), attached to specific cell surface glycoproteins. sLex and its isomer sialyl Lewis a (sLea) have been described in NSCLC, but their functional role in cancer cell adhesion to endothelium is still poorly understood. In this study, it was hypothesised that, similarly to leukocytes, sLe glycans play a role in NSCLC cell adhesion to E-selectins. To assess this, paired tumour and normal lung tissue samples from 18 NSCLC patients were analyzed. Immunoblotting and immunohistochemistry assays demonstrated that tumour tissues exhibited significantly stronger reactivity with anti‑sLex/sLea antibody and E-selectin chimera than normal tissues (2.2- and 1.8-fold higher, respectively), as well as a higher immunoreactive score. High sLex/sLea expression was associated with bone metastasis. The overall α1,3-fucosyltransferase (FUT) activity was increased in tumour tissues, along with the mRNA levels of FUT3, FUT6 and FUT7, whereas FUT4 mRNA expression was decreased. The expression of E-selectin ligands exhibited a weak but significant correlation with the FUT3/FUT4 and FUT7/FUT4 ratios. Additionally, carcinoembryonic antigen (CEA) was identified in only 8 of the 18 tumour tissues; CEA-positive tissues exhibited significantly increased sLex/sLea expression. Tumour tissue areas expressing CEA also expressed sLex/sLea and showed reactivity to E-selectin. Blot rolling assays further demonstrated that CEA immunoprecipitates exhibited sustained adhesive interactions with E-selectin-expressing cells, suggesting CEA acts as a functional protein scaffold for E-selectin ligands in NSCLC. In conclusion, this work provides the first demonstration that sLex/sLea are increased in primary NSCLC due to increased α1,3-FUT activity. sLex/sLea is carried by CEA and confers the ability for NSCLC cells to bind E-selectins, and is potentially associated with bone metastasis. This study contributes to identifying potential future diagnostic/prognostic biomarkers and therapeutic targets for lung cancer.preprintpublishe

    Overexpression of tumour-associated carbohydrate antigen sialyl-Tn in advanced bladder tumours

    Get PDF
    Little is known on the expression of the tumour-associated carbohydrate antigen sialyl-Tn (STn), in bladder cancer. We report here that 75% of the high-grade bladder tumours, presenting elevated proliferation rates and high risk of recurrence/progression expressed STn. However, it was mainly found in non-proliferative areas of the tumour, namely in cells invading the basal and muscle layers. STn was also found in tumour-adjacent mucosa, which suggests its dependence on a field effect of the tumour. Furthermore, it was not expressed by the normal urothelium, demonstrating the cancer-specific nature of this antigen. STn expression correlated with that of sialyltransferase ST6GalNAc.I, its major biosynthetic enzyme. The stable expression of ST6GalNAc.I in the bladder cancer cell line MCR induced STn expression and a concomitant increase of cell motility and invasive capability. Altogether, these results indicate for the first time a link between STn expression and malignancy in bladder cancer. Hence, therapies targeting STn may constitute new treatment approaches for these tumours

    ST3Gal.I sialyltransferase relevance in bladder cancer tissues and cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The T antigen is a tumor-associated structure whose sialylated form (the sialyl-T antigen) involves the altered expression of sialyltransferases and has been related with worse prognosis. Since little or no information is available on this subject, we investigated the regulation of the sialyltransferases, able to sialylate the T antigen, in bladder cancer progression.</p> <p>Methods</p> <p>Matched samples of urothelium and tumor tissue, and four bladder cancer cell lines were screened for: <it>ST3Gal.I</it>, <it>ST3Gal.II </it>and <it>ST3Gal.IV </it>mRNA level by real-time PCR. Sialyl-T antigen was detected by dot blot and flow cytometry using peanut lectin. Sialyltransferase activity was measured against the T antigen in the cell lines.</p> <p>Results</p> <p>In nonmuscle-invasive bladder cancers, <it>ST3Gal.I </it>mRNA levels were significantly higher than corresponding urothelium (p < 0.001) and this increase was twice more pronounced in cancers with tendency for recurrence. In muscle-invasive cancers and matching urothelium, <it>ST3Gal.I </it>mRNA levels were as elevated as nonmuscle-invasive cancers. Both non-malignant bladder tumors and corresponding urothelium showed <it>ST3Gal.I </it>mRNA levels lower than all the other specimen groups. A good correlation was observed in bladder cancer cell lines between the <it>ST3Gal.I </it>mRNA level, the ST activity (r = 0.99; p = 0.001) and sialyl-T antigen expression, demonstrating that sialylation of T antigen is attributable to ST3Gal.I. The expression of sialyl-T antigens was found in patients' bladder tumors and urothelium, although without a marked relationship with mRNA level. The two <it>ST3Gal.I </it>transcript variants were also equally expressed, independently of cell phenotype or malignancy.</p> <p>Conclusion</p> <p>ST3Gal.I plays the major role in the sialylation of the T antigen in bladder cancer. The overexpression of <it>ST3Gal.I </it>seems to be part of the initial oncogenic transformation of bladder and can be considered when predicting cancer progression and recurrence.</p

    Automated Prediction of the Response to Neoadjuvant Chemoradiotherapy in Patients Affected by Rectal Cancer

    Get PDF
    Simple Summary Colorectal cancer is the second most malignant tumor per number of deaths after lung cancer and the third per number of new cases after breast and lung cancer. The correct and rapid identification (i.e., segmentation of the cancer regions) is a fundamental task for correct patient diagnosis. In this study, we propose a novel automated pipeline for the segmentation of MRI scans of patients with LARC in order to predict the response to nCRT using radiomic features. This study involved the retrospective analysis of T-2-weighted MRI scans of 43 patients affected by LARC. The segmentation of tumor areas was on par or better than the state-of-the-art results, but required smaller sample sizes. The analysis of radiomic features allowed us to predict the TRG score, which agreed with the state-of-the-art results. Background: Rectal cancer is a malignant neoplasm of the large intestine resulting from the uncontrolled proliferation of the rectal tract. Predicting the pathologic response of neoadjuvant chemoradiotherapy at an MRI primary staging scan in patients affected by locally advanced rectal cancer (LARC) could lead to significant improvement in the survival and quality of life of the patients. In this study, the possibility of automatizing this estimation from a primary staging MRI scan, using a fully automated artificial intelligence-based model for the segmentation and consequent characterization of the tumor areas using radiomic features was evaluated. The TRG score was used to evaluate the clinical outcome. Methods: Forty-three patients under treatment in the IRCCS Sant'Orsola-Malpighi Polyclinic were retrospectively selected for the study; a U-Net model was trained for the automated segmentation of the tumor areas; the radiomic features were collected and used to predict the tumor regression grade (TRG) score. Results: The segmentation of tumor areas outperformed the state-of-the-art results in terms of the Dice score coefficient or was comparable to them but with the advantage of considering mucinous cases. Analysis of the radiomic features extracted from the lesion areas allowed us to predict the TRG score, with the results agreeing with the state-of-the-art results. Conclusions: The results obtained regarding TRG prediction using the proposed fully automated pipeline prove its possible usage as a viable decision support system for radiologists in clinical practice

    The Mutual Relationship between Glycosylation and Non-Coding RNAs in Cancer and Other Physio-Pathological Conditions

    Get PDF
    Glycosylation, which consists of the enzymatic addition of sugars to proteins and lipids, is one of the most important post-co-synthetic modifications of these molecules, profoundly affecting their activity. Although the presence of carbohydrate chains is crucial for fine-tuning the interactions between cells and molecules, glycosylation is an intrinsically stochastic process regulated by the relative abundance of biosynthetic (glycosyltransferases) and catabolic (glycosidases) enzymes, as well as sugar carriers and other molecules. Non-coding RNAs, which include microRNAs, long non-coding RNAs and circRNAs, establish a complex network of reciprocally interacting molecules whose final goal is the regulation of mRNA expression. Likewise, these interactions are stochastically regulated by ncRNA abundance. Thus, while protein sequence is deterministically dictated by the DNA/RNA/protein axis, protein abundance and activity are regulated by two stochastic processes acting, respectively, before and after the biosynthesis of the protein axis. Consequently, the worlds of glycosylation and ncRNA are closely interconnected and mutually interacting. In this paper, we will extensively review the many faces of the ncRNA-glycosylation interplay in cancer and other physio-pathological conditions

    Immunoglobulin G Glycosylation Changes in Aging and Other Inflammatory Conditions

    No full text
    Among the multiple roles played by protein glycosylation, the fine regulation of biological interactions is one of the most important. The asparagine 297 (Asn297) of IgG heavy chains is decorated by a diantennary glycan bearing a number of galactose and sialic acid residues on the branches ranging from 0 to 2. In addition, the structure can present core-linked fucose and/or a bisecting GlcNAc. In many inflammatory and autoimmune conditions, as well as in metabolic, cardiovascular, infectious, and neoplastic diseases, the IgG Asn297-linked glycan becomes less sialylated and less galactosylated, leading to increased expression of glycans terminating with GlcNAc. These conditions alter also the presence of core-fucose and bisecting GlcNAc. Importantly, similar glycomic alterations are observed in aging. The common condition, shared by the above-mentioned pathological conditions and aging, is a low-grade, chronic, asymptomatic inflammatory state which, in the case of aging, is known as inflammaging. Glycomic alterations associated with inflammatory diseases often precede disease onset and follow remission. The aberrantly glycosylated IgG glycans associated with inflammation and aging can sustain inflammation through different mechanisms, fueling a vicious loop. These include complement activation, Fcγ receptor binding, binding to lectin receptors on antigen-presenting cells, and autoantibody reactivity. The complex molecular bases of the glycomic changes associated with inflammation and aging are still poorly understood

    Epigenetic Bases of Aberrant Glycosylation in Cancer

    Get PDF
    In this review, the sugar portions of glycoproteins, glycolipids, and glycosaminoglycans constitute the glycome, and the genes involved in their biosynthesis, degradation, transport and recognition are referred to as "glycogenes". The extreme complexity of the glycome requires the regulatory layer to be provided by the epigenetic mechanisms. Almost all types of cancers present glycosylation aberrations, giving rise to phenotypic changes and to the expression of tumor markers. In this review, we discuss how cancer-associated alterations of promoter methylation, histone methylation/acetylation, and miRNAs determine glycomic changes associated with the malignant phenotype. Usually, increased promoter methylation and miRNA expression induce glycogene silencing. However, treatment with demethylating agents sometimes results in silencing, rather than in a reactivation of glycogenes, suggesting the involvement of distant methylation-dependent regulatory elements. From a therapeutic perspective aimed at the normalization of the malignant glycome, it appears that miRNA targeting of cancer-deranged glycogenes can be a more specific and promising approach than the use of drugs, which broad target methylation/acetylation. A very specific type of glycosylation, the addition of GlcNAc to serine or threonine (O-GlcNAc), is not only regulated by epigenetic mechanisms, but is an epigenetic modifier of histones and transcription factors. Thus, glycosylation is both under the control of epigenetic mechanisms and is an integral part of the epigenetic code

    UDP-Ga1NAc:NeuAcα2,3Galβ-R (GaINAc to Gal) β1,4-N-acetyl-galactosaminyltransferase responsible for the Sda specificity in human colon carcinoma CaCo-2 cell line

    No full text
    The UDP-GalNAc:NeuAc alpha 2,3Gal beta-R (GalNAc to Gal) beta-1,4-N-acetylgalactosaminyltransferase (beta 1,4GalNAc-transferase) is the enzyme responsible for the addition of the immunodominant sugar of the Sda isto-blood group determinant. In humans the enzyme is mainly expressed in the large intestine. We screened nine human colorectal carcinoma cell lines (SW-948, SW-948 FL, SW-480, SW-48, SW-1417, COLO-205, LOVO, HT-29 and CaCo-2) in order to ascertain the occurrence of beta 1,4GalNAc-transferase. Only in CaCo-2 cells the glycosyltransferase was detected and the activity increased with the degree of enterocytic differentiation. Nevertheless, in highly differentiated CaCo-2 cells the activity was thirty times lower than that found in cells detached from normal colon mucosa. These results support the notion that the expression of beta 1,4GalNAc-transferase is a marker of the colonic cell maturatio

    Selectin Ligands Sialyl-Lewis a and Sialyl-Lewis x in Gastrointestinal Cancers

    No full text
    The tetrasaccharide structures Sia\u3b12,3Gal\u3b21,3(Fuc\u3b11,4)GlcNAc and Sia\u3b12,3Gal\u3b21,4(Fuc\u3b11,3)GlcNAc constitute the epitopes of the carbohydrate antigens sialyl-Lewis a (sLe(a)) and sialyl-Lewis x (sLe(x)), respectively, and are the minimal requirement for selectin binding to their counter-receptors. Interaction of sLe(x) expressed on the cell surface of leucocytes with E-selectin on endothelial cells allows their arrest and promotes their extravasation. Similarly, the rolling of cancer cells ectopically expressing the selectin ligands on endothelial cells is potentially a crucial step favoring the metastatic process. In this review, we focus on the biosynthetic steps giving rise to selectin ligand expression in cell lines and native tissues of gastrointestinal origin, trying to understand whether and how they are deregulated in cancer. We also discuss the use of such molecules in the diagnosis of gastrointestinal cancers, particularly in light of recent data questioning the ability of colon cancers to express sLe(a) and the possible use of circulating sLe(x) in the early detection of pancreatic cancer. Finally, we reviewed the data dealing with the mechanisms that link selectin ligand expression in gastrointestinal cells to cancer malignancy. This promising research field seems to require additional data on native patient tissues to reach more definitive conclusions
    corecore