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Abstract. The formation of distant metastasis resulting from vascular dissemination is 

one of the leading causes of mortality in non-small cell lung cancer (NSCLC). This 

metastatic dissemination initiates with the adhesion of circulating cancer cells to the 

endothelium. The minimal requirement for the binding of leukocytes to endothelial E-

selectins and subsequent transmigration is the epitope of the fucosylated glycan, sialyl 

Lewis x (sLex), attached to specific cell surface glycoproteins. sLex and its isomer sialyl 

Lewis a (sLea) have been described in NSCLC, but their functional role in cancer cell 

adhesion to endothelium is still poorly understood. In this study, it was hypothesised that, 

similarly to leukocytes, sLe glycans play a role in NSCLC cell adhesion to E-selectins. 

To assess this, paired tumour and normal lung tissue samples from 18 NSCLC patients 

were analyzed. Immunoblotting and immunohistochemistry assays demonstrated that 

tumour tissues exhibited significantly stronger reactivity with anti-sLex/sLea antibody and 

E-selectin chimera than normal tissues (2.2- and 1.8-fold higher, respectively), as well as 

a higher immunoreactive score. High sLex/sLea expression was associated with bone 

metastasis. The overall α1,3-fucosyltransferase (FUT) activity was increased in tumour 

tissues, along with the mRNA levels of FUT3, FUT6 and FUT7, whereas FUT4 mRNA 

expression was decreased. The expression of E-selectin ligands exhibited a weak but 

significant correlation with the FUT3/FUT4 and FUT7/FUT4 ratios. Additionally, 

carcinoembryonic antigen (CEA) was identified in only 8 of the 18 tumour tissues; CEA-

positive tissues exhibited significantly increased sLex/sLea expression. Tumour tissue 

areas expressing CEA also expressed sLex/sLea and showed reactivity to E-selectin. Blot 

rolling assays further demonstrated that CEA immunoprecipitates exhibited sustained 

adhesive interactions with E-selectin-expressing cells, suggesting CEA acts as a 

functional protein scaffold for E-selectin ligands in NSCLC. In conclusion, this work 

provides the first demonstration that sLex/sLea are increased in primary NSCLC due to 

increased α1,3-FUT activity. sLex/sLea is carried by CEA and confers the ability for 

NSCLC cells to bind E-selectins, and is potentially associated with bone metastasis. This 

study contributes to identifying potential future diagnostic/prognostic biomarkers and 

therapeutic targets for lung cancer. 

 

Introduction 

Lung cancer is the leading cause of cancer-related mortality worldwide, with 1.8 million 

deaths predicted in 2018 (1). Approximately 85% of all lung cancers are non-small cell 

lung cancer (NSCLC), with adenocarcinoma (AC) being the major histological subtype 
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(2). In NSCLC, the primary cause of mortality is distant metastasis resulting from 

hematogenous dissemination of cancer cells (3). Through this route, NSCLC cells spread 

to the brain, contralateral lung, bones, liver and the suprarenal glands, with consequent 

impact on patient’s survival (3,4). The high mortality of NSCLC means there is an urgent 

requirement to identify mechanisms associated with NSCLC progression, in order to aid 

early determination of its metastatic potential and proper staging. Cancer metastasis is a 

multifaceted process that comprises multiple steps. After invading the stroma, tumour 

cells require the establishment of new vasculature from the pre-existing vasculature via 

angiogenesis to provide nutrition and an oxygen supply (5). Fast tumour growth requires 

that invasive tumour cells adapt to the hostile hypoxic microenvironment and protect from 

immune cell attack; otherwise, they do not survive (6). These factors lead to dramatic 

changes in cell signalling and protein expression that enables the cells to surpass the 

challenges of leaving the primary tumour, migrate to distant sites and establish a 

metastatic focus (7). One of the most critical steps for metastasis is the ability of 

circulating cancer cells to adhere the vascular endothelium (Fig. 1A). The initial adhesive 

interactions are dictated by the calcium-dependent binding of circulating cancer cells to 

endothelial E-selectins expressed in microvasculature at inflammatory sites (8,9). E-

selectin ligands are terminal lactosaminyl tetrasaccharides, prototypically the sialyl Lewis 

x (sLex) and sialyl Lewis a (sLea) glycan antigens, displayed on cell surface protein or 

lipid scaffolds (10). In proteins, these structures are found at terminal ends on the β-1,6 

branching of N-glycans or O-glycans. Patients with NSCLC are reported to overexpress 

sLex and sLea antigens on tumour tissues and serum proteins (11,12). The higher 

expression of sLex and sLea in NSCLC has been associated with enhanced metastatic 

activity and poor prognosis (13,14); however, the contribution of these antigens to 

metastasis remains unclear. Additionally, the mechanism driving sLex and sLea 

overexpression in NSCLC is poorly understood. Nevertheless, in cancer, the expression 

of the glycosyltransferases involved in sLex and sLea biosynthesis is controlled by 

elements in the tumour microenvironment, such as hypoxia and oncogene expression 

(15). This suggests that the hostile microenvironment of a primary tumour triggers sLex 

and sLea expression, enabling cancer cells to adapt and establish adhesive interactions 

with endothelium. sLex and sLea are isomers whose structure consists in α2,3-sialylated, 

and α1,3/4-fucosylated type 2 or type 1 lactosamine chains, respectively (Fig. 1B) 

(16,17). The α2,3-sialyltransferases (ST3GAL3, ST3GAL4, and ST3GAL6) and the 

α1,3-fucosyltransferases (FUT3, FUT4, FUT5, FUT6 and FUT7) can respectively 
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catalyse terminal sialylation and fucosylation steps (18). The same enzymes may also be 

involved in other glycosylation steps that compete with sLex and sLea antigen 

biosynthesis, as FUT4 efficiently catalyses the synthesis of non-sialylated antigens, such 

as Lewis x and Lewis y (19,20). The activity of each enzyme is generally tissue-specific 

and depends mostly on its expression level.  

 As aforementioned, in spite of the overexpression of sLex and sLea in NSCLC 

cells, it is unknown whether they confer adhesive capacity of cancer cells to the 

endothelium. sLex and sLea functional roles depend on their density and availability at 

the cell surface, specifically their presentation by specific scaffolds to potentially be 

recognised by E-selectins expressed on activated endothelial cells. In the present study, it 

was hypothesised that sLex/sLea glycans serve a role in NSCLC cell adhesion to E-

selectins. It was further hypothesised that it is carried by protein scaffolds specific to 

NSCLC. To address this, in this study, sLex/sLea expression and E-selectin reactivity were 

compared in patient-derived tumour and matched normal lung tissues. Furthermore, the 

expression levels of fucosyltransferases and sialyltransferases involved in the 

biosynthesis of sLex and sLea glycans were analysed. Additionally, the ability of these 

ligands to adhere to E-selectin was evaluated, and carcinoembryonic antigen (CEA) was 

identified as a protein scaffold of E-selectin ligands in NSCLC. 

 Improved understanding of the glycosidic alterations occurring throughout 

tumour progression, as well as the pathophysiological role of sLex/sLea glycans-

associated protein scaffolds in tumour cell adhesion to E-selectins, will aid the 

identification of potential therapeutic targets and may enable improved prediction of 

tumour progression and metastasis formation in NSCLC. 

 

Material and methods  

Patient and tissue specimens. The present study involved 18 consecutive patients with 

NSCLC who underwent lobectomy due to lung cancer between July 2011 and January 

2012 at the Thoracic Surgery Department of Hospital Pulido Valente (Lisbon, Portugal). 

The inclusion criteria for the patients enrolled in this study were as follows: i) Patients 

with age ≥18 years; ii) suspected or proven lung cancer with indication for pulmonary 

resection; and iii) histology of lung adenocarcinoma or squamous cell carcinoma. The 

exclusion criteria were: i) Patients with age <18 years; ii) previous chemotherapy or 

radiotherapy; iii) histology compatible with small cell lung cancer, large cell lung cancer, 

lung metastases or benign disease; and iv) pregnant women. A total of 14 patients were 
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further diagnosed with AC and four with squamous cell carcinoma (SCC). The median 

age of the patients was 65 years (48-83 years); 13 patients were male. For each patient, 

fragments of pulmonary tumour tissue and normal lung tissue were collected and 

immediately stored in liquid nitrogen until further processing. The determination of the 

histological type was performed by the Pathology Department from the same hospital. 

Tumour staging was classified according to the TNM classification system based on the 

International Union Against Cancer 8th edition (21). A 5-year follow-up of the patients 

after the initial surgical procedure was conducted, and clinical data were collected into a 

database.  

For bone metastasis analysis, sections of two cases of lung cancer with the corresponding 

metastasis, from male patients aged 58 and 86 years, were used. Samples were collected, 

in the first case from the left lung and in the second case from the right lower lobe. Bone 

metastasis were taken form a lumbar spine injury (L5-S1) and from right clavicle, 

respectively.  

The study was approved by the Ethics Committee of Centro Hospitalar Lisboa Norte. 

Written informed consent was obtained from all patients. A summary of the clinical data 

is available in Table SI. 

 

Immunoblotting and immunoprecipitation analysis. Whole tissue lysates were obtained 

by homogenising patient tissues in lysis buffer [150 mM NaCl, 2 mM CaCl2, 2% Nonidet 

P-40 and protease inhibitors (Roche Diagnostics)]. After centrifugation for 2 min at 

17,000 xg and 4˚C, the quantity of protein within the supernatant was estimated using a 

Pierce™ Bicinchoninic Acid Protein Assay kit (Pierce; Thermo Fisher Scientific, Inc.) 

and stored for further use. Immunoprecipitated CEA was obtained by pre-clearing tissue 

lysates with protein G-agarose, followed by incubation for 2 h at 4˚C with 1 µg/µl of anti-

human CEA (CD66E) monoclonal antibody (mAb; cat. no. 21278661; ImmunoTools 

GmbH). The immunoprecipitate was collected with protein G-agarose beads, boiled and 

the released proteins were analysed via western blotting.  

After an extensive search in the literature and several attempts with the present 

cohort, it was concluded that there is no consensus regarding the optimal loading control 

to use for NSCLC studies, with marked upregulation or downregulation of some of the 

most used housekeeping genes (β-tubulin, β-actin, GAPDH) in human lung tumour 

tissues compared with normal lung tissues (22-24). For this reason and due to sample 

limitation, these loading controls were not used in dot blotting and western blotting 
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experiments. As the best possible alternative, an exact amount of protein was always 

loaded for all experiments. 

For dot blot analysis, 10 μg of tissue lysates were applied to a nitrocellulose 

membrane (GE Healthcare Life Sciences). For western blot analysis, 20 µg of tissue 

lysates or immunoprecipitates were electrophoresed under reducing conditions on an 8% 

polyacrylamide gel and transferred to a polyvinylidene difluoride membrane (Bio-Rad 

Laboratories, Inc.). Membranes were incubated in blocking solution [10% non-fat milk 

diluted in PBS-0.1% Tween 20 for dot blotting, and TBS containing 0.1% Tween-20 

(TBS-T) for western blotting experiments] overnight at 4˚C under agitation. For sLex/sLea 

and CEA detection, nitrocellulose or PVDF membranes were stained with HECA-452 

mAb (1:1,000; cat. no. 321302; BioLegend, Inc.) or anti-human CD66E mAb (1:1,000; 

cat. no. 21278661; ImmunoTools GmbH), followed by staining with a horseradish 

peroxidase (HRP)-conjugated secondary mAb [anti-rat IgM-HRP for HECA-452 staining 

(1:2,500; cat. no. 3080-05; SouthernBiotech); anti-mouse Ig-HRP for CD66E staining 

(1:2,500; cat. no. 554002; BD Pharmingen; BD Biosciences)]. E-selectin ligand staining 

was performed using a 3-step protocol, in the presence of 2 mM CaCl2, which included 

staining with soluble mouse E-selectin-human Fc Ig chimera (E-Ig; 1:500; cat. no. 575-

ES-100; R&D Systems, Inc.), followed by the addition of rat anti-mouse E-selectin 

(CD62E) mAb (1:1,000; cat. no. 550290; BD Pharmingen; BD Biosciences) and then 

HRP-conjugated anti-rat IgG (1:2,000; cat. no. 3030-05; SouthernBiotech) (32). 

Membranes were incubated with Lumi-Light Western Blotting Substrate (Roche 

Diagnostics) according to the manufacturer’s protocols and detected with 

autoradiography film. All blots were replicated at least twice. Image analysis was 

performed using ImageJ 1.48v software (National Institutes of Health), and arbitrary units 

were defined based on the intensity detected by the software. 

 

Gene expression measurements. Tissue samples were homogenised and total RNA was 

isolated following the instructions of the NZY Total RNA Isolation kit (NZYTech). 

cDNA synthesis was performed using a High-Capacity cDNA Reverse Transcription kit 

(Applied Biosystems; Thermo Fisher Scientific, Inc.) according to the manufacturer’s 

protocols. Reverse transcription-quantitative (RT-q)PCR was performed using TaqMan 

probes methodology (6-carboxyfluorescein as a fluorescent dye) and TaqMan Fast 

Universal PCR Master Mix (Applied Biosystems; Thermo Fisher Scientific, Inc.), 

according to the manufacturer’s protocols and in triplicates. The thermal cycling 
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conditions used were as follows: 1 cycle of 2 min at 50˚C, 1 cycle of 10 min at 95˚C, and 

50 cycles of 15 sec at 95˚C and 1 min at 60˚C. For each primer/probe set, the Assay ID 

(Applied Biosystems; Thermo Fisher Scientific, Inc.) was the following: FUT3, 

Hs00356857_m1; FUT4, Hs01106466_s1; FUT5, Hs00704908_s1; FUT6, 

Hs00173404_m1; FUT7, Hs00237083_m1; ST3GAL3, Hs00196718_m1; ST3GAL4, 

Hs00272170_m1; and ST3GAL6, Hs00196086_m1. mRNA expression was normalised 

using the geometric mean of the expression of the endogenous controls, ACTB 

(Hs99999903_m1) and GAPDH (Hs99999905_m1). The relative mRNA level of 

expression was computed as a permillage fraction (‰), calculated using the 2-ΔCq x 1,000 

formula (25,26), which infers the number of mRNA molecules of the gene of interest, for 

every 1,000 molecules of endogenous controls. RT-qPCR was performed in a 7500 Fast 

Real-Time PCR System (Applied Biosystems; Thermo Fisher Scientific, Inc.), and the 

results were analysed using Sequence Detection Software version 1.3 (Applied 

Biosystems; Thermo Fisher Scientific, Inc.). 

 

α1,3-FUT activity assay. α1,3-FUT activity was measured in whole tissue lysates. The 

assay mixture contained 50 mM Na/cacodylate buffer pH 6.5, 15 mM MnCl2, 0.5% Triton 

X-100, 5 mM ATP, 0.1 mM unlabelled GDP-fucose from Sigma-Aldrich (Merck KGaA), 

55000 dpm GDP-[14C] fucose (PerkinElmer, Inc.) and 300 µg fetuin (Sigma-Aldrich; 

Merck KGaA), theoretically corresponding to 0.8 mM Siaα2,3Galβ1,4GlcNAc-R 

acceptor sites. The enzyme reaction was performed in triplicate at 37˚C for 2 h, and then 

the products were precipitated, washed and counted by liquid scintillation. Controls 

without the acceptor (fetuin) were run in parallel, and the incorporation was subtracted. 

Homogenates of COLO-205 cells (27) (kindly provided by Professor Fabio Dall‘Olio, 

University of Bologna, Italy) were used as positive controls. 

 

Adhesion assays. Chinese hamster ovary (CHO) cells transfected either with cDNA 

encoding the full length of the human E-selectin (CHO-E) or with a mock empty pMT2 

vector (CHO-mock; kindly provided by Professor Robert Sackstein, Brigham And 

Women's Hospital, Harvard Medical School) (28) were grown in a humidified 

atmosphere of 5% CO2 at 37˚C in Minimum Essential Medium (MEM; Sigma-Aldrich; 

Merck KGaA) supplemented with 10% of heat-inactivated fetal bovine serum, 2 mM of 

L-glutamine, 100 μg/ml of penicillin/streptomycin, 1 mM of sodium pyruvate and 0.1 

mM of MEM non-essential amino acids solution (all from Gibco; Thermo Fisher 
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Scientific, Inc.). Adhesion assays were performed based on the modified Stamper-

Woodruff binding assay that mimics blood flow interactions (29,30). Briefly, total tissue 

lysates or immunoprecipitated proteins were spotted on glass slides, dried and blocked 

with 1% BSA (Sigma-Aldrich; Merck KGaA) for 1 h at room temperature (RT). CHO-

mock or CHO-E cells, resuspended in Hank's Balanced Salt Solution (HBSS) containing 

2 mM CaCl2 (HBSS-Ca) or 5 mM EDTA (HBSS-EDTA; negative control), were overlaid 

onto a protein spot on the glass slides. In certain cases, CHO-E cells were previously 

incubated with 20 µg/ml of function-blocking anti-CD62E (clone 68-5H11; cat. no. 

555648; BD Biosciences) or isotype control mAb (clone mopc-21; cat. no. 400102; 

BioLegend, Inc.). Slides were then incubated with orbital rotation at 80 RPM for 30 min 

at 4˚C, and subsequently placed in HBSS-Ca or HBSS-EDTA to drain non-adherent cells. 

After fixing the cells with 3% glutaraldehyde for 10 min at 4˚C, the adherent cells were 

examined under a phase contrast microscope (Nikon Digital Eclipse C1 system; 

magnification, x100; Nikon Corporation), and representative photomicrographs (3 frames 

per sample) were acquired for analysis. The number of cells adherent to glass slides and 

observed in each photomicrograph was counted using ImageJ 1.48v software (31).  

 

Flow cytometry: The cell surface expression of E-selectin was analysed in CHO-E and 

CHO-mock cells using anti-E-selectin monoclonal antibody (5 μl; clone 68-5H11, cat. 

no. 555648; BD Biosciences), followed by a anti-mouse Ig-FITC secondary antibody (1 

μl; cat. no. f0479; Dako; Agilent Technologies, Inc.). Antibody staining was performed 

for 30 min at 4˚C followed by incubation with fluorescent‐labelled secondary antibody 

(1 μl) for 15 min at RT in the dark. Background levels were determined in control assays 

by incubating cell suspensions with isotype control mAb (5 μl; clone mopc-21; cat. no. 

400102; BioLegend, Inc.) and fluorescent‐labelled secondary antibody. The experiments 

were performed in an Attune® Acoustic Focusing Cytometer (Applied Biosystems; 

Thermo Fisher Scientific, Inc.) and the results were analysed using the program FlowJo 

v10.0.7 (FlowJo, LLC).  

 

Immunohistochemistry. Tissue specimens were fixed in 10% formalin for 24 h at 4˚C and 

after embedded in paraffin. Paraffin-embedded sections of tumour tissue (2 μm) were 

submitted to antigen retrieval by heating at 94˚C in Trilogy pre-treatment solution (Cell 

Marque; Merck KGaA) for 20 min. After incubation with peroxidase block solution 

(Atom Scientific Ltd.), sections were stained with anti-CD66E mAb (1:100; cat. no. 
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21278661; ImmunoTools GmbH) or anti-sLex/sLea HECA-452 mAb (1:50; cat. no. 

321302; Biolegend, Inc.) for 1 h in Diamond Antibody Reagent (cat. no. 938B-09; Cell 

Marque) containing 1% BSA. For the washings, TBS-T was used. For E-selectin staining, 

E-Ig chimera was used (0.5 µg/100 µl; cat. no. 575-ES-100; R&D Systems, Inc.) for 30 

min, followed by staining with anti-CD62E mAb (1:50; cat. no. 550290; BD Pharmingen; 

BD Biosciences) for 30 min, all in Diamond Antibody Reagent containing 1% BSA. In 

this case, TBS-T containing 2 mM CaCl2 (TBS-T-Ca) was used for the washings (32). 

All antibodies were incubated at RT. Slides were then stained using HiDef Detection HRP 

Polymer System (Cell Marque; Merck KGaA) for 10 min at RT and the colour was 

developed using 3,3’-diaminobenzidine solution (ScyTek Laboratories, Inc.). After 

nuclear contrast staining with haematoxylin (3 min at RT) and mounting with Quick-D 

mounting medium, the slides were visualised under a light microscope with coupled 

camera by two certified independent pathologists. A semi-quantitative approach was 

established for tissue slide evaluation (33), to calculate the immunoreactive score (IRS). 

The IRS is calculated by multiplying two scores: The cell proportion score that is 0 if all 

cells were negative, or 1 if <25%, 2 if 26-50%, 3 if 51-75% and 4 if >75% cells were 

stained; and the staining intensity score that is 0 when no stain was found, or 1 if weak, 2 

if intermediate and 3 if strong staining intensity was observed. All images were acquired 

with magnification, x10, and for the semi-quantitative analysis, 4 fields per section were 

evaluated. 

 

Statistical analysis. Data from normal tissues were paired with data from matched tumour 

tissues and statistical differences were analysed using paired t-test (data with a normal 

distribution) or Wilcoxon matched-pairs signed rank test (data with a non-normal 

distribution). The correlations between data were analysed using Spearman correlation 

and categorized as weak (r>0.3), moderate (r>0.5) and strong (r>0.7). To investigate 

associations between gene mRNA, sLex/sLea and E-selectin ligand expression, and 

clinical features the Fisher's exact statistical test was used. The multivariate survival 

model used was the Cox proportional hazards model, performed with R 3.6.0 (“survival” 

package; https://github.com/therneau/survival). In case of multiple comparisons, one-

way ANOVA tests were performed to test the statistical difference between the groups of 

the study, with Tukey’s multiple comparison post hoc test. Overall survival was defined 

as the time from diagnosis to the date of death (months). Patients alive at the end of the 

study or who succumbed to clearly non-cancer-related causes were censored. Tests were 
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considered statistically significant when P<0.05 and marginally significant when 

0.05<P<0.1. Statistical analysis was performed using GraphPad Prism 6 (GraphPad 

Software, Inc.).  

 

Results  

E-selectin ligands and sLex/sLea antigens are overexpressed in NSCLC tumour tissues. 

To ascertain the E-selectin ligand expression in NSCLC, 18 normal and matched tumoral 

lung tissues were compared for reactivity to HECA-452 mAb, an antibody that recognises 

both sLex and sLea structures, and E-Ig, an E-selectin chimera that recognises E-selectin 

ligands. Immunoblotting revealed that all tissues showed reactivity with HECA-452 mAb 

and E-Ig, which was significantly higher (2.2- and 1.8-fold) in tumour samples compared 

with matched normal samples (Fig. 2A and B). Furthermore, the intensity of the reactivity 

of both stainings exhibit a strong positive correlation (r=0.748, P<0.001; Fig. 2C). 

Immunohistochemistry revealed that tumoral tissue also exhibited stronger reactivity to 

both HECA-452 mAb (IRS, 4-9 vs. 1) and E-Ig (IRS, 6-9 vs. 2) compared with normal 

tissue (Fig. 2D). These results suggested that sLex/sLea antigens and E-selectin ligands in 

NSCLC exhibit increased expression in tumour tissues compared with normal tissues. 

 The associations between sLex/sLea and E-selectin ligand expression, and clinical 

features such as histological type, stage of disease, gender, age, metastatic site and 

smoking habits were assessed. Considering the expression of sLex/sLea in tumour and 

normal tissue, it was found that patients who developed bone metastasis had a higher 

tumour/normal (T/N) ratio compared with patients who developed metastasis in other 

sites (P<0.05; Table I). Other clinical features showed no statistically significant 

association with sLex/sLea or E-selectin ligands. 

Considering the correlation between sLex/sLea and E-selectin ligand expression, 

and the association between sLex/sLea expression and the development of bone 

metastasis, the expression of sLex/sLea and E-selectin ligands in bone metastasis tissue 

derived from patients with NSCLC was then assessed. Weak positive reactivity was 

observed in metastasized cells (IRS, 1-2; Fig. 2D), suggesting an important role for these 

structures in cancer progression and the promotion of metastasis. It is important to refer 

that these samples are from bone metastasis, which for an immunohistochemistry purpose 

requires a decalcification process. This process leads to a possible partial loss of antigen, 

even more considering the calcium binding dependence of E-selectin binding (partially 

recovered by the addition of CaCl2 in all solutions involved in E-SL experiments). Hence, 
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a staining with a lower IRS (or equivalent to the normal section) was expected. 

Furthermore, the primary tissue has a strong expression of E-SL that potentiates the 

migration and leads to the formation of metastasis in distant sites. After E-selectin 

binding, cancer cells pass through the endothelium (TEM) and start to colonize new sites, 

forming metastasis. During metastatic establishment in these new sites, the expression of 

biomarkers that potentiate migration is expected to decrease. Also for this reason, a lower 

IRS was expected.  

FUT3, FUT6 and FUT7 are upregulated in NSCLC tumour tissues. To gain further 

insight into the molecular basis of augmented E-selectin ligands in NSCLC, the 

expression of enzymes critical to the biosynthesis of sLex/sLea were subsequently 

compared in matched normal and tumour tissues (Fig. 1B). First, the expression of the 

genes that encode for the α1,3/4-fucosyltransferases (FUT3, FUT4, FUT5, FUT6 and 

FUT7) and α2,3-sialyltransferases (ST3GAL3, ST3GAL4 and ST3GAL6), which add 

fucose and sialic acid residues, respectively, to type 1 or type 2 glycan precursors of 

sLex/sLea, were evaluated via RT-qPCR analysis (Fig. 1B). With few exceptions, all 

genes were expressed in all samples and presented a broad range of expression levels. It 

was observed that FUT3 showed a marginally significant 2.3-fold increase in expression 

in tumour compared to normal tissue (0.05<P<0.1; Fig. 3A). FUT6 and FUT7 expression 

levels were significantly increased in NSCLC tissues samples compared with matched 

normal tissues (5.3- and 2-fold, respectively; P<0.001 and P<0.05, respectively; Fig. 3A). 

These results suggested increased α1,3-FUT activity in tumour tissue. A comparison of 

the relative levels of expression of α1,3-FUTs revealed that FUT7 is poorly expressed, 

compared with FUT6, and particularly with FUT3 and FUT4. Conversely, FUT4, 

ST3GAL4 and ST3GAL6 expression levels were significantly decreased by 3.1, 2 and 2.5 

times, respectively, in tumour compared with normal tissues (P<0.001, P<0.05 and 

P<0.05, respectively). ST3GAL3 expression was not statistically different between 

normal and tumour tissue (Fig. 3A). FUT5 expression was not detected in the present 

study. 

 Then, the enzyme activity of total α1,3-FUT was measured in matched samples. 

Due to sample limitation, only samples from 7 patients (namely patients 1, 2, 3, 5, 6, 7 

and 9) were used. As presented in Fig. 3B, α1,3-FUT activity in tumour tissues was 

significantly increased compared with in matched normal tissues (P<0.05), confirming 

the gene expression data. 
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 It was also assessed whether there was any correlation between the analysed genes 

and E-Ig staining in tumour tissues samples (data not shown). A moderate positive 

correlation was observed between the expression levels of FUT3 and FUT6 (r=0.517, 

P<0.05), FUT3 and FUT7 (r=0.624, P<0.01), and FUT6 and FUT7 (r=0.680, P<0.01), 

suggesting that the expression of these FUTs is regulated similarly (data not shown). Of 

note, a weak correlation was observed between the expression of E-selectin ligands, and 

the expression ratios of FUT3/FUT4 (r=0.369, P<0.01) and FUT7/FUT4 (r=0.366, 

P<0.05; data not shown). These data suggested that overexpression of FUT3 and FUT7 

enzymes, and concomitant downregulation of FUT4 enzymes may promote E-selectin 

ligands expression in NSCLC. 

 Patients were then categorised in two groups (n=9/group), according to the FUT4 

mRNA expression; those with FUT4 mRNA <10 and those ~30 (Fig. 3A). The group 

with lower FUT4 expression exhibited higher expression levels of E-selectin compared 

with the group with higher FUT4 expression (3.974±1.102 vs 2.837±1.135; P<0.05; data 

not shown). Of note, the former group of patients displayed a lower overall survival 

(hazard ratio =0.16; 95% CI; 0.018-1.4; 0.05<P<0.1), suggesting that a lower FUT4 T/N 

expression ratio was a potential biomarker for poor prognosis (Fig. 3C). None of the other 

variables tested proved to be significant in the multivariate survival model used.  

 When subdividing the patients according to their tumours’ histological type, it was 

possible to observe a marginally significantly higher ratio of FUT3 expression in patients 

with AC compared with patients with SCC (0.05<P<0.1) and a significantly higher ratio 

of FUT7 expression in female compared with male patients (P<0.05; Fig. S1). 

Additionally, a marginally higher T/N ratio of FUT6 was observed in non-smoker patients 

compared with smoker patients (0.05<P<0.1; Fig. S1).  

  

CEA is expressed in NSCLC samples with high expression of sLex/sLea glycans. CEA is 

a glycoprotein involved in cell adhesion, showing high levels of expression in lung cancer 

compared with adult normal lung tissues (34). It was hypothesised that CEA was 

expressed in these samples as a potential scaffold of sLex/sLea in NSCLC. Via western 

blot analysis, it was observed that CEA was not detectable in normal lung tissue. In 

contrast, it was verified that 8 out of the 18 NSCLC samples expressed CEA, presenting 

a characteristic band of ~180kDa (specifically, samples 1, 2, 7, 9, 10 and 15, with weaker 

bands also detected in samples 16 and 18; Fig. 4A). Of note, all samples from patients 

with bone metastasis expressed CEA (Table SI). Comparing the CEA-negative and CEA-
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positive NSCLC samples, it was observed that CEA-positive samples had a significantly 

higher expression of sLex/sLea glycans (Fig. 4B). To investigate a potential association 

between CEA, sLex/sLea and E-selectin ligands, immunohistochemistry analysis was 

performed using five NSCLC sections from tissues which exhibited higher levels of CEA 

in western blotting. Paraffin-embedded sections were stained with anti-CEA mAb, anti-

sLex/sLea and E-Ig chimera. Normal tissue sections showed no reactivity with anti-CEA, 

anti-sLex/sLea or E-Ig (IRS, 0), except for inflammatory cells, which stained with E-Ig 

and anti-sLex/sLea (IRS, 1-2; data not shown). In contrast, tumour sections showed 

general high staining for sLex/sLea (IRS, 4-9), E-selectin ligands (IRS, 6-9) and CEA 

(IRS, 4-9), with cytoplasmic and cell membrane localisation (Fig. 4C). Furthermore, areas 

showing reactivity for CEA also stained with sLex/sLea and E-Ig, suggesting co-

localization of CEA and sLex/sLea in these tissues. These results suggested that CEA is a 

potential protein scaffold for sLex/sLea in NSCLC and has a possible role as an E-selectin 

ligand. 

 

CEA is an E-selectin ligand in NSCLC tissues. To study whether CEA in NSCLC is 

associated with sLex/sLea and recognized by E-selectin, protein lysates from the five 

NSCLC tissues were electrophoresed and analysed via western blotting, using E-Ig, and 

anti-sLex/sLea and anti-CEA mAbs. Among the glycoproteins detected by anti-sLex/sLea 

mAb and E-Ig chimera, one displaying the same molecular weight as CEA (180 kDa) was 

present in all five tumour samples examined (Fig. 5A). Other glycoproteins reactive with 

anti- sLex/sLea mAb and/or E-Ig chimera of higher molecular weight (MW), such as 

mucins with MW >245 kDa, and lower MW have yet to be identified.  

To further confirm that CEA reacted with E-selectin, CEA was 

immunoprecipitated from the protein lysates of patient 7, one of the patients with the 

highest CEA expression as determined by western blotting (Fig. 4A). Immunoprecipitated 

CEA was analysed via western blotting to verify whether this protein was stained with 

anti-sLex/sLea mAb and/or E-Ig chimera. As shown in Fig. 5B, immunoprecipitated CEA 

was recognised by both, confirming that CEA is a sLex/sLea antigens carrier and an E-

selectin ligand in NSCLC. 

 

CEA is a functional E-selectin ligand in flow conditions. The primary role of E-selectin 

engagement during transendothelial migration is to slow down the leukocytes circulating 

in the bloodstream, in order to promote their adhesion to the endothelium (35). To infer 
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the ability of NSCLC cells to bind to E-selectin in flow conditions, whether the proteins 

isolated from NSCLC tissue were able to support rolling interactions with cells expressing 

E-selectin on their surface (CHO-E cells; Fig. S2) was assessed. By using an alternative 

Stamper-Woodruff assay to mimic blood flow conditions (36), it was observed that the 

tumour proteins were able to specifically bind CHO-E cells in the presence of calcium-

containing buffer (Fig. 6A). Conversely, in the presence of EDTA-containing buffer or 

function-blocking mAbs against E-selectin, binding to CHO-E cells was significantly 

reduced (Fig. 6A), indicating that this cell adhesion was mediated specifically by E-

selectin interactions. E-selectin is a calcium-binding-dependent lectin, thus the 

requirement to use calcium-containing buffer for this assay (9). To further demonstrate 

that CEA protein scaffold is one of the functional E-selectin ligands in NSCLC, the ability 

of CEA immunoprecipitated from tumour proteins to bind to CHO-E and CHO-mock 

cells under flow conditions was assessed. As shown in Fig. 6B, immunoprecipitated CEA 

was able to bind to CHO-E cells, but not CHO-mock, and the interaction was abrogated 

by EDTA-containing buffer. Collectively, these data indicated that CEA expressed by 

NSCLC is a functional E-selectin ligand.  

 

Discussion 

Several studies have reported the expression of sLex/sLea glycans in NSCLC tissues and 

cell lines (34,37,38). The discovery of these glycans in the serum of patients soon 

motivated the quest to validate these as prognostic biomarkers (39). Elevated levels of 

sLex/sLea glycans have been associated with metastasis by several studies (38,40,41). In 

cell lines, their contributions to the adhesion of cancer cells to selectins expressed by 

vascular endothelium (42), including brain endothelium (43), have been shown. These 

findings highlight the potential role of sLex/sLea as E-selectin ligands contributing to the 

adhesion of cancer cells to endothelium and subsequent metastasis (44,45). However, 

little is known regarding the molecular basis of sLex/sLea expressed by the primary tissue, 

particularly its protein scaffold and whether they also enable the cells to establish 

adhesive interactions with endothelium selectins.  

 The present study showed that sLex/sLea glycans are significantly overexpressed 

in NSCLC tissues in comparison with matched normal lung tissues. These results are in 

agreement with previous studies showing increased expression of sLex/sLea glycans in 

both serum and biopsies from patients with NSCLC (14,41,46). The data also showed 

that NSCLC has high reactivity with E-selectin compared with normal tissue, whose 
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intensity is correlated with anti-sLex/sLea mAb reactivity. Although sLex/sLea glycans are 

known as the prototypical ligands of E-selectin, their functional binding also depends on 

accessibility at the cell surface (47). In fact, the mere expression of the glycan ligands 

does not imply E-selectin binding. Therefore, this study provides the first evidence, to 

our knowledge, that NSCLC tissue has E-selectin reactivity. 

 The present study showed that increased sLex/sLea expression in NSCLC tissue 

was observed in patients who later developed bone metastasis. Furthermore, it was found 

that metastatic tissue derived from NSCLC primary tissues also expressed sLex/sLea and 

E-selectin ligands, which were expressed in metastasized cancer cells. In humans, bone 

marrow microvasculature constitutively expresses E-selectin, as well as all vascular 

endothelium following stimulation with inflammatory cytokines (48,49). Therefore, this 

observation suggested that sLex/sLea overexpression in NSCLC cells is an adaptation to 

enable cells to adhere to vascular E-selectins and metastasise to other locations, such as 

the bone. In addition to E-selectin engagement, sLex/sLea can also alter the immune 

homeostasis of the mucous membrane by impairing tumour cell recognition by the 

immune system and favouring cancer progression (40-42). 

The present data also showed that the median values of FUT3, FUT6 and FUT7 

mRNA expression, and the overall mean α1,3-FUT activity were higher in NSCLC 

tumour tissues, whereas that of FUT4 was lower and that of FUT5 was not detected. The 

observed FUT3, FUT6 and FUT7 gene expression profiles are consistent with previous 

reports showing that FUT3 is abundantly and markedly expressed in lung cancer tissues, 

whereas FUT6 and FUT7 are detected at lower levels but also upregulated compared with 

normal tissues (16,53,54). These significant alterations in the expression of FUT genes 

may be the underlying cause of the observed overexpression of sLex/sLea; however, to 

prove that altered FUT gene expression is causative of altered sLex/sLea expression, other 

studies will have to be performed.  

 sLex/sLea biosynthesis is a highly convoluted process with several 

glycosyltransferases involved (55). For example, sLex antigens biosynthesis is a very 

complex process, of which the addition of fucose is the last step. Fucosyltransferases 

compete with each other for similar substrates. Consistent with previous reports (53), in 

this study the expression of FUT4, an enzyme involved in non-sialylated Lewis 

biosynthesis, was found to be lower in tumour tissue. Notably, the ratios of FUT3/FUT4 

and FUT7/FUT4 expression correlated with E-selectin ligand expression, highlighting the 

concomitant and competitive role of these enzymes in E-selectin ligand biosynthesis. 
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Furthermore, the FUT4 T/N expression ratio enabled marginally significant evaluation of 

the overall survival of patients; thus, it is proposed that the relative level of FUT4 serves 

as a protective factor and is therefore a clinically relevant prognostic biomarker. 

 sLex/sLea was also identified in normal cells, but at significantly reduced levels. 

Nonetheless, changes in the expression of these glycans due to malignant transformation 

may depend not only on the expression of fucosyl- and sialyltransferases, but also on the 

activity of other enzymes that can lead to more complex or alternative structures (56,57). 

Further studies are required to fully understand the alterations of glycan biosynthesis 

occurring in NSCLC.  

 As the functional binding of sLex/sLea antigens with E-selectins is crucially 

dependent on their presentation by scaffold proteins (48-50), their mere detection has 

limited prognostic value in different cancers (51-53). Thus, the identification of sLex/sLea 

-decorated protein scaffolds is expected to provide more specific and reliable clinical 

biomarkers. While carriers of E-selectin ligands have been identified in several types of 

cancer, including the CD44 glycoform known as hematopoietic cell E-/L-selectin ligand 

in colon cancer, and CEA in colon and prostate cancer (64,65), no functionally defined 

E-selectin ligands were identified in NSCLC to date. Here, the data indicated that CEA 

decorated by sLex/sLea acts as a functionally relevant E-selectin ligand. Thus, CEA 

interactions with endothelial selectins may the mediate tethering, rolling and adhesion of 

tumour cells to the endothelium, consequently promoting cancer metastasis. CEA is a 

glycoprotein with low and limited expression in normal tissues, but is detected at high 

levels in tumours with epithelial origin, including NSCLC, gastric carcinoma and 

colorectal cancer, for which it is used as a tumour biomarker (66). Serum CEA in patients 

with NSCLC correlates with advanced stage of the disease, poor therapeutic response, 

early relapse and shorter survival (34,67). Notably, besides cell adhesion, CEA also 

serves key functions in intracellular and intercellular signalling involved in cancer 

progression, inflammation, angiogenesis and metastasis (68). Thus, CEA-E-selectin 

interactions may also contribute to these malignant features. Although CEA and sLex/sLea 

have been extensively suggested as clinical biomarkers in NSCLC (12,69,70), to our 

knowledge, this is the first study addressing the functional relevance of sLex/sLea-

associated CEA as an E-selectin ligand in primary NSCLC tissue. 

 Unlike other reports that used cell lines, the present findings were obtained in 

primary NSCLC and paired non-tumour pulmonary tissues. The use of primary tissue 

offers undeniably greater relevance to the findings, as it reflects the in vivo NSCLC 
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microenvironment. Yet, the use of primary tissue posed limitations on sample quantity 

and sample size that affected reproducibility and requires validation in larger cohorts. The 

expression of E-selectin ligands in lung tissue derived from healthy subjects also remains 

to be established. A further limitation of the present study was the use of normal 

pulmonary tissues derived from patients with NSCLC. Non-cancerous tissues 

surrounding the tumour is a common control for these types of studies; however, it can 

be affected by the presence of infiltrating cancer cells or the so-called ‘field effect’ of 

tumour growth (71,72).  

 Overall, the present findings indicated that sLex/sLea and E-selectin ligands are 

overexpressed in NSCLC tissue compared with adjacent control tissue, alongside 

increased 1,3-FUT activity and fucosyltransferase transcript expression. The highest 

sLex/sLea levels were detected in the primary tissues of patients with bone metastasis, 

hinting that these antigens may promote metastasis to this site. Furthermore, the presence 

of sLex/sLea and E-selectin ligands on CEA suggests that mechanistically, CEA may 

facilitate adhesion to endothelium selectins and consequently promote cancer metastasis. 

This study also pinpoints the usefulness of sLex/sLea-modified CEA as a potential 

therapeutic target and diagnostic biomarker in NSCLC, a finding that requires validation 

in future studies. 
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Figure legends 

Figure 1. Schematic representation of the multistep metastatic process in cancer and main 

structures involved. (A) Contribution of sLex/sLea antigens in facilitating cell adhesion to 

E-selectins. There are four main steps in the extravasation process, including tethering 

and rolling, integrin activation, firm adhesion and transendothelial migration. Metastatic 
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dissemination is facilitated by interactions between tumour cells and endothelium in 

distant tissues. These interactions are mediated by E-selectins expressed by activated 

endothelial cells and the corresponding E-selectin ligands expressed on the cell surface 

of cancer cells. These ligands are prototypically the sLex and sLea antigens, displayed on 

cell surface proteins or lipid scaffolds. (B) Structure and schematic representation of the 

biosynthesis of sialyl Lewis antigens. sLea and sLex antigens are sialofucosylated isomer 

tetrasaccharides, derived from type 1 or type 2 sugar chains, respectively, attached to N- 

or O-glycan residues. The two types of structures are sialylated by the action of the 

indicated α2,3-sialyltransferases and successively fucosylated by the action of the FUT3 

(in type 1 chains), and FUT3, 4, 5, 6 or 7 (in type 2 chains). FUT, fucosyltransferase; 

sLea/x, sialyl Lewis a/x. 

 

Figure 2. NSCLC has increased anti-sLex/sLea mAb and E-selectin reactivity. (A) Dot 

blot analysis of anti-sLex/sLea mAb reactivity in matched normal and tumour proteins. 

Total lysates of N or T tissues were spotted on nitrocellulose membrane and stained with 

HECA-452 mAb. Left panel, representative dot blot analysis of the HECA-452 mAb 

reactivity. Right, the intensity of each dot blot spot, determined using ImageJ 1.48v 

software and expressed as arbitrary units. Box-and-whisker plots represent median, and 

lower and upper quartile values (boxes), ranges and all values for each group (black dots). 

(B) Dot blot analysis of E-selectin reactivity in matched normal and tumour proteins. 

Total lysates of N or T tissues were spotted on nitrocellulose membrane and stained with 

E-Ig. Left, representative dot blot analysis of E-Ig reactivity. Right, the intensity of each 

dot blot spot expressed as arbitrary units. Box-and-whisker plots represent median values, 

and lower and upper quartiles (boxes), ranges and all values for each group (black dots). 

*P<0.05, ***P<0.001. (C) Correlation between anti-sLex/sLea mAb and E-Ig staining 

intensity in tumour tissue. Correlation was analysed using Spearman’s correlation 

coefficient. (D) Anti-sLex/sLea mAb and E-Ig reactivity in paraffin-embedded normal, 

tumour and metastasis sections. Sequential sections from representative normal, non-

small cell lung cancer and bone metastasis tissues were stained with HECA-452 mAb 

(top) and E-Ig chimera (bottom) via immunohistochemistry. Nuclei stained with 

haematoxylin. Magnification, x10. E-Ig, mouse E-selectin-human Fc Ig chimera; mAb, 

monoclonal antibody; N, normal; sLea/x, sialyl Lewis a/x; T, tumour. 
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Figure 3. NSCLC tissues show upregulation of FUT3, FUT6 and FUT7 and increased 

α1,3-FUT activity. (A) Relative mRNA levels of FUT3, FUT4, FUT6, FUT7, ST3GAL3, 

ST3GAL4 and ST3GAL6 in normal and tumour tissues from patients with NSCLC, as 

determined via reverse transcription-quantitative PCR analysis. Values indicate the 

number of mRNA molecules of a certain gene per 1,000 molecules of the average of the 

endogenous controls (ACTB and GAPDH). Box-and-whisker plots represent median 

values, and lower and upper quartiles (boxes), ranges and all values for each group (black 

dots). (B) Evaluation of α1,3-FUT activity in tissue lysates. α1,3-FUT enzymatic activity 

was evaluated in lysates obtained from normal and NSCLC tissues derived from 7 

patients. Activity was measured using fetuin as an acceptor. 0.05<P<0.1, marginally 

significant; *P<0.05, **P<0.01, ***P<0.001. (C) Relationship between overall survival and 

FUT4 expression ratio. Curve plots of overall survival in 18 patients (vertical tick marks 

indicate censored cases). Patients with high FUT4 T/N ratios (n=9) and patients with low 

FUT4 T/N ratios (n=9) were separated based on the median value. The multivariate 

survival model used was the Cox proportional hazards model. 0.05<P<0.1, marginally 

significant. FUT, fucosyltransferase; NSCLC, non-small cell lung cancer; ST3GAL, 

α2,3-sialyltransferase; T/N, tumour/normal. 

 

Figure 4. CEA is expressed in patients with NSCLC. (A) Western blot analysis of CEA 

glycoprotein in tumour lysates. Protein (20 µg) obtained from NSCLC patients’ tissues 

were ran in reduced SDS-PAGE gels and blotted with anti-CEA mAb. The numbers 

above each lane represent the patient number. The lane N corresponds to a representative 

normal tissue lysate from a patient with NSCLC (particularly from patient number 7), 

showing negative anti-CEA reactivity. This figure shows a blot with tracks from samples 

analysed separately. (B) sLex/sLea and E-selectin ligands expression in CEA-negative and 

CEA-positive patients. The tumour/normal ratios of sLex/sLea expression (left) and E-

selectin ligands expression (right) were calculated and separated for CEA-negative and 

CEA-positive patients. Box-and-whisker plots represent median values, and upper and 

lower quartiles (boxes), ranges and all values for each group (black dots). *P<0.05. (C) 

sLex/sLea, E-selectin ligands and CEA have overlapping staining profiles in NSCLC 

tissues. Sequential paraffin-embedded NSCLC tissue sections from patients 2, 7, 10 and 

15 were stained with HECA-452 mAb (left), E-Ig chimera (middle), and anti-CEA mAb 

(right) via immunohistochemistry. Nuclei were stained with haematoxylin. 

Magnification, x10. CEA, carcinoembryonic antigen; E-Ig, mouse E-selectin-human Fc 



 27 

Ig chimera; E-SL, E-selectin; mAb, monoclonal antibody; N, normal; NSCLC, non-small 

cell lung cancer; sLea/x, sialyl Lewis a/x. 

 

Figure 5. CEA from NSCLC associates with sLex/sLea and has reactivity with E-selectin. 

(A) Western blot analysis of tumour lysates from CEA-positive NSCLC tissues. CEA-

positive NSCLC tissues were resolved via SDS-PAGE and immunoblotted with HECA-

452 mAb, E-Ig and anti-CEA mAb. (B) Western blot analysis of immunoprecipitated 

CEA. CEA was immunoprecipitated from the tumour lysate of patient 7, and then 

resolved via SDS-PAGE and blotted. Left, HECA-452 staining; middle, E-Ig staining; 

right, anti-CEA mAb staining. CEA, carcinoembryonic antigen; E-Ig, mouse E-selectin-

human Fc Ig chimera; HECA, HECA-452; IP, immunoprecipitation; mAb, monoclonal 

antibody; NSCLC, non-small cell lung cancer; sLea/x, sialyl Lewis a/x. 

 

Figure 6. CEA glycoprotein is a functional E-selectin ligand in NSCLC. (A) Adhesion of 

E-selectin-expressing cells to NSCLC lysates. Lysates of NSCLC tissue, derived from 

patient 7, were spotted on glass slides, and the adhesion of CHO-E cells was tested using 

a modified Stamper-Woodruff binding assay test. As E-selectin interactions are calcium-

dependent, CHO-E cells were resuspended in calcium buffer. EDTA buffer was used as 

a control. Cells were pre-incubated with 20 µg/ml of specific mAbs prior to the adhesion 

experiment; isotype control or function-blocking anti-E-selectin mAb. (B) Adhesion of 

E-selectin-expressing cells to CEA immunoprecipitate. CEA was immunoprecipitated 

from NSCLC tissue derived from patient 7 and spotted on glass slides. Adhesion of CHO-

E or CHO-mock cells to CEA IP was tested using a modified Stamper-Woodruff binding 

assay. CHO-E and CHO-mock cells were resuspended in calcium buffer, and CHO-E 

cells resuspended in EDTA buffer were used as a negative control. One-way ANOVA 

followed by Tukey’s post hoc test was used for analysis. *P<0.05, **P<0.01. 

Representative pictures captured for each condition (magnification, x100) are represented 

below the respective graphs. CD62E, E-selectin; CEA, carcinoembryonic antigen; CHO, 

Chinese hamster ovary cells; CHO-E, E-selectin-expressing CHO; CHO-mock, empty 

vector-transfected CHO; isotype, isotype control Ab; mAb, monoclonal antibody. 

 

Figure S1. Association between gene expression and clinical features. The T/N 

expression ratios of FUT3, FUT4, FUT6, FUT7, ST3GAL3, ST3GAL4 and ST3GAL6 were 

separated according to the histological type, stage, gender, age, metastasis, overall 
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survival and smoking habits of the patients. Only significant differences are presented. 

(A) FUT3 expression ratio according to the histological type. AC, n=14; SCC, n=4. (B) 

FUT7 expression ratio according to patient gender. Female, n=4; male, n=10. (C) FUT6 

expression ratio according to patient smoking habits. Smoker, n=8; non-smoker, n=6. 

Box-and-whisker plots represent median values, and lower and upper quartiles (boxes), 

ranges and all values for each group (black dots). 0.05<P<0.1, marginally significant; 

*P<0.05. AC, adenocarcinoma; FUT, fucosyltransferase; SCC, squamous cell carcinoma; 

ST3GAL, α2,3-sialyltransferase. 

 

Figure S2. E-selectin expression in CHO-mock and CHO-E cells. Representative flow 

cytometry histograms for the expression of E-selectin in CHO-mock cells and CHO-E 

cells, after staining with anti-E-selectin monoclonal antibody (clone 68-5H11). The 

dotted line represents cells labelled with isotype control. CHO, Chinese hamster ovary 

cells; CHO-E, E-selectin-expressing CHO; CHO-mock, empty vector-transfected CHO. 

 

Table I. Relation between expression of sLex/sLea and E-selectin ligands with patient’s 

clinical features. 

Clinical feature  sLex/a 

expression 

(mean T/N 

ratio ± SEM) 

P-value E-Selectin 

ligands 

expression  

(mean T/N ratio 

± SEM) 

P-value 

Histological type  
 

0.577 
 

>0.999 

  Adenocarcinoma 

(N=14) 

1.710±0.165 
 

1.557±0.185 
 

  Squamous cell 

carcinoma (N=4)  

1.448±0.220 
 

1.633±0.321 
 

Stage of disease 
 

0.335 
 

<0.999 

  I + II (N=11) 1.500±0.222 
 

1.556±0.189 
 

  III (N=7) 1.748±0.176 
 

1.585±0.234 
 

Gender 
 

>0.999 
 

<0.999 

  Male (N=13) 1.670±0.182  
 

1.562±0.216  
 

  Female (N=5) 1.604±0.171  
 

1.604±0.108  
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Metastatic site  
 

0.033a 
 

0.500 

  Bones (N=3) 2.353±0.307 
 

1.663±0.156  
 

  Other sites (N=7) 1.270±0.162  
 

1.173±0.292  
 

Age 
 

0.347 
 

0.153 

  < median age (N=9) 1.483±0.213  
 

1.190±0.195  
 

  ≥ median age (N=9) 1.820±0.166  
 

1.958±0.172 
 

Smoking habits 
 

<0.999 
 

<0.999 

  Smoker (N=11) 1.625±0.186  
 

1.715±0.215 
 

  Non-smoker (N=7) 1.693±0.214 
 

1.351±0.210  
 

aP<0.05. sLex/a; sialyl Lewis x/a; T/N, tumour/normal tissue. 
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