22 research outputs found

    Non-orthogonal Theory of Polarons and Application to Pyramidal Quantum Dots

    Get PDF
    We present a general theory for semiconductor polarons in the framework of the Froehlich interaction between electrons and phonons. The latter is investigated using non-commuting phonon creation/annihilation operators associated with a natural set of non-orthogonal modes. This setting proves effective for mathematical simplification and physical interpretation and reveals a nested coupling structure of the Froehlich interaction. The theory is non-perturbative and well adapted for strong electron-phonon coupling, such as found in quantum dot (QD) structures. For those particular structures we introduce a minimal model that allows the computation and qualitative prediction of the spectrum and geometry of polarons. The model uses a generic non-orthogonal polaron basis, baptized the "natural basis". Accidental and symmetry-related electronic degeneracies are studied in detail and are shown to generate unentangled zero-shift polarons, which we consistently eliminate. As a practical example, these developments are applied to realistic pyramidal GaAs QDs. The energy spectrum and the 3D-geometry of polarons are computed and analyzed, and prove that realistic pyramidal QDs clearly fall in the regime of strong coupling. Further investigation reveals an unexpected substructure of "weakly coupled strong coupling regimes", a concept originating from overlap considerations. Using Bennett's entanglement measure, we finally propose a heuristic quantification of the coupling strength in QDs.Comment: 17 pages, 11 figures, 3 table

    Distinct levels in Pom1 gradients limit Cdr2 activity and localization to time and position division.

    Get PDF
    Where and when cells divide are fundamental questions. In rod-shaped fission yeast cells, the DYRK-family kinase Pom1 is organized in concentration gradients from cell poles and controls cell division timing and positioning. Pom1 gradients restrict to mid-cell the SAD-like kinase Cdr2, which recruits Mid1/Anillin for medial division. Pom1 also delays mitotic commitment through Cdr2, which inhibits Wee1. Here, we describe quantitatively the distributions of cortical Pom1 and Cdr2. These reveal low profile overlap contrasting with previous whole-cell measurements and Cdr2 levels increase with cell elongation, raising the possibility that Pom1 regulates mitotic commitment by controlling Cdr2 medial levels. However, we show that distinct thresholds of Pom1 activity define the timing and positioning of division. Three conditions-a separation-of-function Pom1 allele, partial downregulation of Pom1 activity, and haploinsufficiency in diploid cells-yield cells that divide early, similar to pom1 deletion, but medially, like wild-type cells. In these cells, Cdr2 is localized correctly at mid-cell. Further, Cdr2 overexpression promotes precocious mitosis only in absence of Pom1. Thus, Pom1 inhibits Cdr2 for mitotic commitment independently of regulating its localization or cortical levels. Indeed, we show Pom1 restricts Cdr2 activity through phosphorylation of a C-terminal self-inhibitory tail. In summary, our results demonstrate that distinct levels in Pom1 gradients delineate a medial Cdr2 domain, for cell division placement, and control its activity, for mitotic commitment

    Maximal symetrization and reduction of fields: application to wavefunctions in solid state nanostructures

    Full text link
    A novel general formalism for the maximal symetrization and reduction of fields (MSRF) is proposed and applied to wavefunctions in solid state nanostructures. Its primary target is to provide an essential tool for the study and analysis of the electronic and optical properties of semiconductor quantum heterostructures with relatively high point-group symmetry, and studied with the kpk\cdot p formalism. Nevertheless the approach is valid in a much larger framework than kpk\cdot p theory, it is applicable to arbitrary systems of coupled partial differential equations (e.g. strain equations or Maxwell equations). For spinless problems (scalar equations), one can use a systematic Spatial Domain Reduction (SDR) technique which allows, for every irreducible representation, to reduce the set of equations on a minimal domain with automatic incorporation of the boundary conditions at the border, which are shown to be non-trivial in general. For a vectorial or spinorial set of functions, the SDR technique must be completed by the use of an optimal basis in vectorial or spinorial space (in a crystal we call it the Optimal Bloch function Basis - OBB). The advantages are numerous: sharper insights on the symmetry properties of every eigenstate, minimal coupling schemes, analytically and computationally exploitable at the component function level, minimal computing domains. The formalism can be applied also as a postprocessing operation, offering all subsequent analytical and computationnal advantages of symmetrization. The specific case of a quantum wire (QWRs) with C3vC_{3v} point group symmetry is used as a concrete illustration of the application of MSRF.Comment: 33 pages, 13 figures, Many small changes in equations, which use more standard conventions in the passive point of view, and corrections of a number of minor mistake

    A Survey of Avian Influenza in Tree Sparrows in China in 2011

    Get PDF
    Tree sparrows (Passer montanus) are widely distributed in all seasons in many countries. In this study, a survey and relevant experiments on avian influenza (AI) in tree sparrows were conducted. The results suggested that the receptor for avian influenza viruses (AIVs), SAα2,3Gal, is abundant in the respiratory tract of tree sparrows, and most of the tree sparrows infected experimentally with two H5 subtype highly pathogenic avian influenza (HPAI) viruses died within five days after inoculation. Furthermore, no AIVs were isolated from the rectum eluate of 1300 tree sparrows, but 94 serological positives of AI were found in 800 tree sparrows. The serological positives were more prevalent for H5 subtype HPAI (94/800) than for H7 subtype AI (0/800), more prevalent for clade 2.3.2.1 H5 subtype HPAI (89/800) than for clade 2.3.4 (1/800) and clade 7.2 (4/800) H5 subtype HPAI, more prevalent for clade 2.3.2.1 H5 subtype HPAI in a city in southern China (82/800) than in a city in northern China (8/800). The serological data are all consistent with the distribution of the subtypes or clades of AI in poultry in China. Previously, sparrows or other passerine birds were often found to be pathogenically negative for AIVs, except when an AIV was circulating in the local poultry, or the tested passerine birds were from a region near waterfowl-rich bodies of water. Taken together, the data suggest that tree sparrows are susceptible to infection of AIVs, and surveys targeting sparrows can provide good serological data about the circulation of AIVs in relevant regions

    Fermi-GBM Discovery of GRB 221009A: An Extraordinarily Bright GRB from Onset to Afterglow

    Get PDF
    We report the discovery of GRB 221009A, the highest flux gamma-ray burst ever observed by the Fermi Gamma-ray Burst Monitor (GBM). This GRB has continuous prompt emission lasting more than 600 seconds which smoothly transitions to afterglow visible in the GBM energy range (8 keV--40 MeV), and total energetics higher than any other burst in the GBM sample. By using a variety of new and existing analysis techniques we probe the spectral and temporal evolution of GRB 221009A. We find no emission prior to the GBM trigger time (t0; 2022 October 9 at 13:16:59.99 UTC), indicating that this is the time of prompt emission onset. The triggering pulse exhibits distinct spectral and temporal properties suggestive of the thermal, photospheric emission of shock-breakout, with significant emission up to ∼15 MeV. We characterize the onset of external shock at t0+600 s and find evidence of a plateau region in the early-afterglow phase which transitions to a slope consistent with Swift-XRT afterglow measurements. We place the total energetics of GRB 221009A in context with the rest of the GBM sample and find that this GRB has the highest total isotropic-equivalent energy (Eγ,iso=1.0×10^55 erg) and second highest isotropic-equivalent luminosity (Lγ,iso=9.9×10^53 erg/s) based on redshift of z = 0.151. These extreme energetics are what allowed us to observe the continuously emitting central engine of GBM from the beginning of the prompt emission phase through the onset of early afterglow

    The organelle of differentiation in embryos: the cell state splitter

    Full text link

    The 2005/2006 avian influenza monitoring of wild birds and commercial poultry in Switzerland

    Full text link
    In October 2005, the second Swiss national avian influenza monitoring in wild waterfowl and commercial poultry with free range management started. Cloacal swabs were examined by real-time reverse transcription-polymerase chain reaction for bothMgene of influenza A virus and H5 subtype. The monitoring (more than 2000 samples tested) documented the introduction of H5N1 in Swiss wild waterfowl in mid-February 2006. Until the end of March, 29 water bird carcasses were found H5 positive. In the same period, domestic poultry flocks with a permit of free-range management were kept under surveillance, with negative results

    Modeling morphogen gradient formation from arbitrary realistically shaped sources.

    No full text
    Much of the analytical modeling of morphogen profiles is based on simplistic scenarios, where the source is abstracted to be point-like and fixed in time, and where only the steady state solution of the morphogen gradient in one dimension is considered. Here we develop a general formalism allowing to model diffusive gradient formation from an arbitrary source. This mathematical framework, based on the Green's function method, applies to various diffusion problems. In this paper, we illustrate our theory with the explicit example of the Bicoid gradient establishment in Drosophila embryos. The gradient formation arises by protein translation from a mRNA distribution followed by morphogen diffusion with linear degradation. We investigate quantitatively the influence of spatial extension and time evolution of the source on the morphogen profile. For different biologically meaningful cases, we obtain explicit analytical expressions for both the steady state and time-dependent 1D problems. We show that extended sources, whether of finite size or normally distributed, give rise to more realistic gradients compared to a single point-source at the origin. Furthermore, the steady state solutions are fully compatible with a decreasing exponential behavior of the profile. We also consider the case of a dynamic source (e.g. bicoid mRNA diffusion) for which a protein profile similar to the ones obtained from static sources can be achieved

    Formation of the long range dpp morphogen gradient

    Get PDF
    The TGF-β homolog Decapentaplegic (Dpp) acts as a secreted morphogen in the Drosophila wing disc, and spreads through the target tissue in order to form a long range concentration gradient. Despite extensive studies, the mechanism by which the Dpp gradient is formed remains controversial. Two opposing mechanisms have been proposed: receptor-mediated transcytosis (RMT) and restricted extracellular diffusion (RED). In these scenarios the receptor for Dpp plays different roles. In the RMT model it is essential for endocytosis, re-secretion, and thus transport of Dpp, whereas in the RED model it merely modulates Dpp distribution by binding it at the cell surface for internalization and subsequent degradation. Here we analyzed the effect of receptor mutant clones on the Dpp profile in quantitative mathematical models representing transport by either RMT or RED. We then, using novel genetic tools, experimentally monitored the actual Dpp gradient in wing discs containing receptor gain-of-function and loss-of-function clones. Gain-of-function clones reveal that Dpp binds in vivo strongly to the type I receptor Thick veins, but not to the type II receptor Punt. Importantly, results with the loss-of-function clones then refute the RMT model for Dpp gradient formation, while supporting the RED model in which the majority of Dpp is not bound to Thick veins. Together our results show that receptor-mediated transcytosis cannot account for Dpp gradient formation, and support restricted extracellular diffusion as the main mechanism for Dpp dispersal. The properties of this mechanism, in which only a minority of Dpp is receptor-bound, may facilitate long-range distribution
    corecore