
Non-orthogonal Theory of Polarons and Application to Pyramidal Quantum Dots

D. Obreschkow1,3 , F. Michelini2,3, S. Dalessi3, E. Kapon3, and M.-A. Dupertuis3
1 Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford, OX1 3RH, UK
2 Provence Material and Microelectronics Laboratory (L2MP), 13384 Marseille Cedex 13, France
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We present a general theory for semiconductor polarons in the framework of the Fröhlich in-
teraction between electrons and phonons. The latter is investigated using non-commuting phonon
creation/annihilation operators associated with a natural set of non-orthogonal modes. This setting
proves effective for mathematical simplification and physical interpretation and reveals a nested
coupling structure of the Fröhlich interaction. The theory is non-perturbative and well adapted for
strong electron-phonon coupling, such as found in quantum dot (QD) structures. For those particu-
lar structures we introduce a minimal model that allows the computation and qualitative prediction
of the spectrum and geometry of polarons. The model uses a generic non-orthogonal polaron basis,
baptized “the natural basis”. Accidental and symmetry-related electronic degeneracies are studied
in detail and are shown to generate unentangled zero-shift polarons, which we consistently elim-
inate. As a practical example, these developments are applied to realistic pyramidal GaAs QDs.
The energy spectrum and the 3D-geometry of polarons are computed and analyzed, and prove that
realistic pyramidal QDs clearly fall in the regime of strong coupling. Further investigation reveals
an unexpected substructure of “weakly coupled strong coupling regimes”, a concept originating
from overlap considerations. Using Bennett’s entanglement measure, we finally propose a heuristic
quantification of the coupling strength in QDs.

I. INTRODUCTION

Quantum structures (QSs), such as quantum dots
(QDs), are sophisticated solid-state pieces, vital for fun-
damental research and novel applications in quantum op-
tics and quantum informatics. Today, QDs find techno-
logical use in QD lasers,1 infrared photodetectors,2 sin-
gle photon sources3,4 or markers in biology.5 Cutting-
edge research features QDs as medical fluorophores for in
vivo detection of cell structures such as tumors.6 Other
promising applications for QDs are solar cells7 and opti-
cal telecommunication.8 The most exciting, yet challeng-
ing expectation relies in the use of QDs as qubit holders
and gates for quantum computation.9 For fundamental
science, QDs are among the few systems allowing con-
trolled experiments with single energy quanta giving di-
rect access to controlled quantum entanglement and cor-
relations.

Due to their extreme carrier sensitivity, much interest
in QDs relates to carrier relaxation and excitation pro-
cesses mediated by various interactions, such as carrier-
carrier, carrier-photon and carrier-phonon interactions.
As for carrier-phonon interactions, early perturbative ap-
proaches with acoustic phonons resulted in the bottleneck
concept.10–13 Theses perturbative results predict ineffi-
cient carrier relaxation for a large class of small QDs.
Although experimentally verified in certain cases14,15,
these predictions failed in many other tests.16,17 A defi-
nite progress came with non-perturbative investigations
of the deformation potential and Fröhlich interaction, re-
vealing the existence of a strong coupling regime, which
is out of reach of perturbative approaches and allows
efficient carrier relaxation through acoustic and opti-
cal phonon dynamics respectively.18–21 This led to the
new concept of quantum dot polarons (QDPs), which

are non-separable fundamental excitations determined
by the carrier-phonon interaction. Within the approx-
imation of monochromatic LO-modes for the Fröhlich
interaction, electrons only couple to a finite number of
lattice modes as analytically explained through an alge-
braic decomposition introduced by Stauber et al.22 Their
procedure constructs an orthonormalized basis of rele-
vant lattice modes from the finite set of phonon cre-
ation/annihilation operators naturally appearing in the
Fröhlich Hamiltonian. This leads to a numerically solv-
able model of QDPs23, which can be viewed as an exten-
sion of the work by Ferreira et al.24

In this work, the polaron problem is tackled from a
different viewpoint: the full electron-phonon Hamilto-
nian is reformulated in terms of non-orthogonal modes,
which naturally span all coupled and uncoupled crystal
vibrations. The non-orthogonal structure is preserved
from the beginning to the end and exhibits undisputable
advantages for computation and physical understanding.
General analytical results applicable to any type of semi-
conductor QS are derived in this framework. They are
subsequently applied to peculiar pyramidal C3v GaAs
QDs, but the same theoretical scheme could be applied
to any other semiconductor QD structure, e.g. zincblende
InAs QDs with C2v symmetry25 or Wurzite GaN QDs
with high C3v or C6v symmetry.26

Section II considers a general QS populated by an ar-
bitrary number of bound electrons and phonons. We
first introduce a set of non-orthogonal LO-modes, which
spans all the LO-modes appearing in the Fröhlich inter-
action. From there we derive two decoupled subalgebras
of non-commuting phonon creation/annihilation opera-
tors, which separate the quantum structure in a subsys-
tem of bound polarons and a subsystem of uncoupled
modes (II B). The theory culminates in a non-trivial
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nested coupling structure of the Fröhlich interaction,
which has important consequences when working with
any finite number of phonons (II C). In section III, we in-
troduce a minimal non-perturbative model (one electron,
one phonon) particularly suitable for the crucial case of
QDPs. We provide an explicit non-orthogonal polaron
basis, baptized the “natural basis” (III A). It provides
a detailed interpretation of the geometries and spectra
of low-energy QDPs. We also investigate additional sim-
plifications resulting from electronic degeneracies (III B)
and group theoretical considerations of dot symmetries
(III C). The theory concludes with some key aspects of
the three-dimensional (3D) numerical code (IIID), which
comprises an adaptive irregular space discretization for
computing the Fröhlich matrix elements.

In a second part, the minimal model is applied to
realistic pyramidal GaAs QDs with C3v symmetry.27
Section IV presents the 3D-geometries of the QDPs
and their spectrum, throughout using group theory
(IV A, IV B, IV E). Explicit comparison with perturba-
tion theory confirms the existence of a strong coupling
regime. Surprisingly, we find significant numerical evi-
dence for a peculiar substructure inside the strong cou-
pling regime. This leads to the concept of “weakly cou-
pled strong coupling regimes” (IV C), which can be un-
derstood in terms of overlap between confined electrons
and coupled modes. Using Bennett’s entanglement mea-
sure, we further present a useful alternative character-
ization of the strong electron-phonon coupling in QDs
(IV D).

In section V, we report on the general polaron proper-
ties that could be expected in other QD systems. Section
VI concludes the theory with a short review, and helpful
derivations are provided in the appendix VII.

II. NON-ORTHOGONAL THEORY FOR
POLARON STATES

In this section, we present a theory for polar semicon-
ductor QSs, e.g. dots, wires or wells, in which the carrier
evolution is reasonably described by Fröhlich interactions
with monochromatic LO-modes. The QSs can contain an
arbitrary number of electrons (within the limitations in-
duced by the Pauli exclusion principle) and an arbitrary
number of phonons. The conservation laws exhibited by
the interaction Hamiltonian allow straightforward gener-
alizations to exciton-polarons or even polarons associated
with bigger electron/hole complexes.

A. Polaron Hamiltonian in Quantum Structures

The model’s evolution is dictated by a Hamiltonian
composed of a free evolution term and the Fröhlich

Hamiltonian Hint,

H =
∑
µ σ

εµa†µσaµσ + εLO

∑
q

b†qbq + Hint

Hint =
∑

µµ′σq

Mµµ′qa†µσaµ′σbq + h.c.
(1)

(Unity operators and tensor products have been omit-
ted.) aµσ, a†µσ are fermionic annihilation and creation
operators of confined conduction electrons, with µ label-
ing an orthogonal set of stationary wave functions and
σ being the spin index. The scalars εµ are the free elec-
tronic energies, which are independent of σ in the ab-
sence of magnetic fields. bq, b†q are the bosonic annihi-
lation and creation operators of phonons associated with
the LO-plane waves ξq(x) ≡

√
2/V eiq·x, where V is the

quantization volume. εLO = ~ωLO is the phonon en-
ergy assumed independent of q (monochromaticity), and
Mµµ′q are the Fröhlich matrix elements28

Mµµ′q =

√
~ωLOe2

2ε0V q2

(
1

ε∞
− 1

εstat

)

×
∫

R3
d3x eiq·xψ∗µ(x)ψµ′(x)

(2)

where εstat and ε∞ are the static and high frequency di-
electric constants and ψµ(x) are the (one-particle) elec-
tronic wave functions. Since the Hamiltonian (1) is de-
coupled and symmetrical in spin degrees of freedom, we
shall from here on omit the spin indices σ.

B. Subsystem of Quantum Structure Polarons

We shall now apply a non-orthogonal linear transfor-
mation to the operator basis {bq, b†q} in order to reveal
two decoupled physical subsystems, the subsystem of
“Quantum Structure Polarons” (QSPs) and the subsys-
tem of “Uncoupled Phonons” (Uphs). This conceptual
separation will be reflected in a tensor product decom-
position of the representative Hilbert space.

The matrix elements (2) can be considered as discrete
3-dimensional functions of q. They obey relations of lin-
ear dependance, as can be seen by choosing the electronic
wave functions ψµ(x) real (always possible), in which
case Mµµ′q = Mµ′µq. If there are N orthogonal electron
states µ, the number of such relations is N(N−1)/2. The
remaining N(N + 1)/2 matrix elements show no obvious
relations of linear dependance, and we shall temporarily
assume that there are the only N(N − 1)/2 independent
relations of linear dependance. The theory remains valid
in the case of additional linear dependencies such as dis-
cussed towards the end of this subsection.

The structure of the Fröhlich interaction implies that
the number of linearly independent matrix elements
Mµµ′q equals the number of linearly independent lattice
modes that appear in the interaction term. This can be
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seen explicitly, when reformulating the interaction as

Hint =
∑

µµ′
Jµµ′a

†
µaµ′Bµµ′ + h.c. (3)

Bµµ′ ≡ 1
Jµµ′

∑
q

Mµµ′qbq ≡
∑
q

Lµµ′qbq (4)

where |Jµµ′ |2 =
∑

q |Mµµ′q|2 quantizes the electron-
phonon coupling strength, with Jµµ′ chosen as a posi-
tive real. The relations of linear dependance among the
matrix elements Mµµ′q trivially translate to B†

µµ′ = B†
µ′µ

and Bµµ′ = Bµ′µ. The remaining N(N +1)/2 linearly in-
dependent phonon operators shall be scanned by a unique
pair index λ ≡ {µ, µ′} = {µ′, µ}.

The operators {Bλ, B†
λ} annihilate and create “coupled

phonons”, that is quanta in terms of a harmonic oscillator
in modes susceptible to interact with electrons via the
Fröhlich potential. Using (4), the wave functions of those
modes are given by the inverse Fourier transforms

Ξλ(x) =
∑

q

L∗λqξq(x) ≡
√

2
V

∑
q

eiq·xL∗λq (5)

which are manifestly localized in the quantum structure.
The set of all modes Ξλ(x) is non-orthogonal as empha-
sized by the non-diagonal scalar product matrix and the
non-diagonal commutator of the corresponding operators
{Bλ, B†

λ}. Both follow directly from (5) and (4),

Λλλ′ ≡
[
Bλ, B†

λ′

]
=

(
Ξλ, Ξλ′

)
=

∑
q

L∗λ′qLλq (6)

(Round brackets represent the scalar product relative
to the quantization volume V .) For reasons of physi-
cal interpretation and mathematical simplicity, we skip
a possible orthonormalization and preserve the non-
orthogonality for the rest of the theory.

In order to express the full Hamiltonian in terms of
the new operators {B†

λ, Bλ}, we need to complete them
by an operator-set {B†

q, Bq} generating the orthogonal
complement {Ξq(x)} of the coupled modes {Ξλ(x)}. We
choose a linear transformation,

B†
q ≡

∑

q′
cqq′bq′

† , Ξq(x) ≡
∑

q′
cqq′ξq(x) (7)

A natural and sufficient condition for the coefficients cqq′

writes B†
q

∣∣0〉
= (111 ph−P) b†q

∣∣0〉
, where

∣∣0〉
is the phonon

vacuum, 111 ph the unity on the subspace of one phonon,
and P is the orthogonal projector on the sub-subspace of
coupled one-phonon states vect{B†

λ

∣∣0〉}. Thus (111 ph−P)
projects on the one-phonon sub-subspace of uncoupled
modes, and {B†

q} creates quanta accordingly called “un-
coupled phonons”. An explicit derivation of the coef-
ficients cqq′ is provided in appendix VII A. From this
explicit form it follows that the modes {Ξq(x)} are
also mutually non-orthogonal, which again translates to

a non-diagonal commutator of the corresponding cre-
ation/annihilation operators {B†

q, Bq},
[
Bq, B†

q′

]
=

(
Ξq,Ξq′

)
=

∑

q′′
c∗qq′′cq′q′′ , (8)

Indeed, the modes {Ξq(x)} constitute an overcomplete
set, according to the N(N + 1)/2 relations of linear de-
pendence

∑
q

L∗λqB†
q =

∑
q

L∗λqΞq(x) = 0 ∀λ (9)

However, it is important to note that all coupled modes
{Ξλ(x)} are orthogonal to all uncoupled ones {Ξq(x)},
as emphasized by the following commutators and scalar
products

[
Bλ, B†

q

]
=

(
Ξλ, Ξq

)
= 0 (10)

The transformations (4) and (7) constitute a non-
orthogonal mapping {b†q} → {B†

λ, B†
q}. The inversion

{b†q} ← {B†
λ, B†

q} is not unique due to the overcomplete-
ness of {B†

q}. A suitable form, consistent with (4) and
(7), is given by

b†q = B†
q +

∑

λλ′
Lλ′q(Λ−1)λλ′B

†
λ (11)

This allows us to express the phonon number operator in
terms of the new operators,

∑
q

b†qbq =
∑

λλ′

(
Λ−1

)
λλ′B

†
λBλ′ +

∑
q

B†
qBq (12)

Finally, the full Hamiltonian (1) transforms to

H = HQSP + HUph, HQSP ≡ H0 + Hint (13)

H0 ≡
∑

µ

εµa†µaµ + εLO

∑

λλ′

(
Λ−1

)
λλ′B

†
λBλ′ (14)

HUph ≡ εLO

∑
q

B†
qBq (15)

(unity operators and tensor products have been omitted).
The fundamental commutators (10) imply the commuta-
tor

[
HQSP ,HUph

]
= 0 (16)

The latter defines a unique separation in two physical
subsystems, expressed by the tensor product decomposi-
tion

H = HQSP ⊗HUph (17)

such that HQSP acts trivially in HUph and HUph acts
trivially in HQSP . [(17) assumes the bosonic sym-
metrization of the phonon subsystem.] The subsystem
represented in HQSP consists of electrons and coupled
phonons associated with a finite number of N(N + 1)/2
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linearly independent modes {Ξλ(x)}. The stationary
states (i.e. eigenstates of HQSP ) are likely entangled in
electronic and phononic coordinates and will be referred
as to “quantum structure polarons” (QSPs). In contrast,
the subsystem of “uncoupled phonons”, represented in
HUph, is a pure phonon-system associated with infinitely
many uncoupled bulk modes {Ξq(x)}. Each such mode
evolves trivially under the phonon number operator, and
thus the quantum structure problem drastically reduces
to solving HQSP inside HQSP .

This theory remains valid if the Fröhlich matrix ele-
ments exhibit other linear dependencies than Mµµ′q =
Mµ′µq (and their linear combinations). Indeed, if there
are N ′ linearly independent matrix elements, N ′ <
N(N + 1)/2, it suffices to redefine the index λ such as
to label only the corresponding independent operators
Bµ,µ′ . The derivation above stays valid with this redefi-
nition, if any number N(N +1)/2 is replaced by N ′. (e.g.
the number of linear dependencies among the uncoupled
modes Bq will be reduced to N ′, etc.)

It is worth noting that the Hamiltonian HQSP mani-
festly conserves the number of electrons, i.e.

[
HQSP ,

∑
µ

εµa†µaµ

]
= 0 (18)

This conservation law implies the existence of one cou-
pled mode that only couples to the electron number op-
erator, such as shown by Stauber et al.23 In contrast to
their choice, we decide to keep this particular mode in
the system of QSPs. Indeed, even though this mode does
not affect the overall electron dynamics, it is located in
the quantum structure and evolves through the creation
an reannihilation of intermediate electrons. Therefore,
its stationary solutions are Glauber-coherent states, very
different from the stationary phonon-number states of
uncoupled modes.

C. Nested Coupling Structure

In this section, we shall uncover a nested structure in
the Fröhlich coupling. This structure implies in partic-
ular that certain states differing by one phonon (e.g. a
state with one phonon and a state with two phonons)
are exclusively coupled via intermediate higher order
states (e.g. a state with three phonons). This non-trivial
coupling structure provides some intuition for the form
of stationary states and implies a rule to truncate the
Hilbert space if the polaron problem is restricted to a
finite number of phonons.

In the following non-perturbative analysis, two states∣∣ψ〉
,
∣∣ϕ〉

are called “coupled” if the evolution of one state
develops a non-vanishing projection on the other, i.e.〈
ψ

∣∣exp(−iHQSP t)
∣∣ϕ〉 6= 0 for at least one t. Thus the

subspace Ha coupled to a subspace Hb is given by

Ha = vect
{

e−iHQSP t
∣∣ϕ〉

: ∀ t,
∣∣ϕ〉 ∈ Hb

}
(19)

In order to identify a coupling structure, we first use
the conservation of the number of electrons [eq. (18)]. It

reveals that coupling structure can be identified individu-
ally for each fixed number of electrons without loss of gen-
erality. For the rest of this section, we shall thus restrict
our considerations to some fixed number of electrons m
(m ≥ 1), and take the subspace HQSP as restricted to m
electrons. Second, we note that HQSP does not couple
orthogonal spin states, and hence the coupling structure
can be investigated with all electrons having the same
fixed spin σ. As HQSP acts identically on all values of σ
spins can be generally neglected (as in the previous sec-
tion). Third, we use the property that the Fröhlich op-
erator Hint affects phonon numbers by one unit. Hence,
it is useful to decompose HQSP in subspaces associated
with different numbers of phonons k,

HQSP =
∞⊕

k=0

HQSP
k

HQSP
k ≡ vect

{
a†ν1

· · · a†νm
B†

µ1µ′1
· · ·B†

µkµ′k

∣∣0〉}
(20)

The index list {νi, µi, µ
′
i} goes over all combinations of

electronic indices, such that νi 6= νj ∀ i 6= j (Pauli ex-
clusion principle). Here,

∣∣0〉 ≡
∣∣0electrons

〉 ⊗
∣∣0phonons

〉
denotes the polaron vacuum.

According to the coupling rule (19), the subspace cou-
pled to HQSP

k is given by

vect
{

e−iHQSP t
∣∣ϕ〉

: ∀ t,
∣∣ϕ〉 ∈ HQSP

k

}
(21)

To pinpoint a particularity in the coupling between
HQSP

p and its “inferior neighbor” HQSP
p−1 , we shall tem-

porarily restrict the phonon Fock space to at most p
phonons (p > 0). This implicitly requires a trunca-
tion of the Hamiltonian HQSP equivalent to imposing
B†

λ

∣∣ϕ〉
= 0 ∀ ∣∣ϕ〉 ∈ HQSP

p . We define H̃QSP
p as the

sub-subspace of HQSP
p coupled to HQSP

p−1 within this re-
striction. Departing from (21) with k = p−1, H̃QSP

p can
be simplified to (derivation in appendix VII B)

H̃QSP
p ≡ vect

{
e−iH0tHint

+

∣∣ϕ〉
: ∀ t,

∣∣ϕ〉 ∈ HQSP
p−1

}
(22)

where H0 is the free evolution (14) and Hint
+ ≡∑

µµ′ Jµµ′a
†
µaµ′B

†
µµ′ denotes the phonon creating part of

the Fröhlich interaction (3). In physical terms, (22) ex-
presses that an electron-phonon state

∣∣ϕ〉
, initially con-

taining p − 1 phonons, evolves towards a superposition
involving a certain p-phonon state (by Fröhlich interac-
tion). The latter is generally not an eigenstate of H0 and
its free evolution can span a whole p-phonon subspace
coupled to the initial state

∣∣ϕ〉
. For further simplifica-

tion we decompose Hint
+

∣∣ϕ〉
in eigenstates of H0,

Hint
+

∣∣ϕ〉
=

∑
γ

PγHint
+

∣∣ϕ〉
(23)

where γ labels the eigenspaces of H0 inside HQSP
p , and

Pγ are the orthogonal projectors on all these eigenspaces.
As Pγ projects on a p-phonon subspace and

∣∣ϕ〉
is
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a (p − 1)-phonon state, we can safely replace PγHint
+

by PγHint, for Pγ annihilates the phonon annihilat-
ing part of the interaction Hint. Invoking the relation
e−iH0tPγHint

∣∣ϕ〉
= e−iεγt/~PγHint

∣∣ϕ〉
and substituting

(23) in (22) gives

H̃QSP
p = vect

{
PγHint

∣∣ϕ〉
: ∀ γ,

∣∣ϕ〉 ∈ HQSP
p−1

}
(24)

(since e−iεγt/~ for different γ are linearly independent
functions of t.)

The eigenspace projectors Pγ act trivially on the sub-
system of lattice modes populated by p phonons, since
all p-phonon states are degenerate (monochromaticity as-
sumption). As for the electron subsystem (here consid-
ered as non-degenerate), the different eigenspaces can be
labeled as γ ≡ {ν1, . . . , νm}, where {. . .} denotes an un-
ordered set and νi 6= νj ∀ i 6= j. (Spin indices were omit-
ted according to the introduction of this section.) The
electronic part of the projectors Pγ can then be expressed
as

a†ν1
· · · a†νm

∣∣0electrons

〉〈
0electrons

∣∣aνm · · · aν1 (25)

Substituting this expression in (24), allows to express
H̃QSP

p with explicit basis vectors. After rearrangement
and substitution of indices, we find

H̃QSP
p = vect

{
a†ν1

· · · a†νm
B†

µ1µ′1
· · ·B†

µpµ′p

∣∣0〉}
(26)

where µ1 = ν1, and µ′1 6= νi ∀i = 2, . . . , m. Expression
(26) shows that H̃QSP

p is necessarily a subspace of HQSP
p .

We conclude that if the number of phonons is limited
to p (p ≥ 1), the subspace HQSP

p−1 couples to H̃QSP
p , but

not to its orthogonal complement H̃QSP ⊥
p ⊂ HQSP

p .
In conclusion, if for physical or computational reasons

the model is truncated to a finite number of phonons p,
then the subspace HQSP

p must be restricted to H̃QSP
p .

Otherwise non-physical polarons would appear (con-
tained in H̃QSP ⊥

p ), that would seem uncoupled and thus
unshifted relative to the free spectrum. Such a precau-
tion was apparently not taken in previous works.23 The
particular truncation HQSP

p → H̃QSP
p also represents an

analytical and computational simplification.
If we release the temporary assumption of a finite

phonon number p (or if we take k < p), the following
statement holds: k-phonon states in H̃QSP ⊥

k do not di-
rectly couple to (k− 1)-phonon states, but can only cou-
ple to (k − 1)-phonon states via intermediate (k + 1)-
phonon (and higher order) states! In a perturbative ap-
proach, these particular couplings would first appear in
the third order of the interaction term. Direct couplings,
i.e. couplings that do not involve intermediate higher-
order states, are represented by the arrows in Fig. 1.
This nested structure provides some insight in the form
of stationary polarons (which generally superpose states
with different phonon numbers). For example, stationary
superpositions of states from H̃QSP ⊥

k and HQSP
k−1 neces-

sarily involve a strong contribution of states from H̃QSP
k+1 .

On the other hand, there may be stationary polarons
made of states from H̃QSP

k and HQSP
k−1 with only a minor

contribution of states from HQSP
k+1 .

etc.

0 phonons 1 phonon 2 phonons 3 phonons

0

1

2

3

FIG. 1: Nested coupling structure exhibited by the Fröhlich
interaction. Arrows represent couplings that do not involve
intermediate states with a higher number of phonons (see

text). Solid circles contain the subspaces HQSP
k for differ-

ent k’s. Dashed circles enclose the subspaces H̃QSP
k , whereas

hatched zones show their orthogonal complements H̃QSP ⊥
k

within HQSP
k . The solid gray filling indicates the subspace

H∗ spanned by the natural basis (28).

III. ONE-ELECTRON/ONE-PHONON MODEL
OF QDPS

In the framework of the general non-orthogonal the-
ory developed above, we shall now propose a minimal
non-perturbative model for polaron states in quantum
dots (QDs). The general quantum structure considered
so far, is now specified as a quantum dot: QS→QD
and QSP→QDP. In such zero-dimensional systems, the
monochromaticity assumption, crucial for the present
theory, is fairly precise for the relevant modes (i.e. wave-
lengths comparable to the dot size and thus long com-
pared to the atomic spacing). The model assumes a sin-
gle electron (m = 1) populating different levels while
coupling to at most one phonon (p = 1). It allows to ap-
proximate the shifts of the first polaron levels, which are
typically populated at low temperatures, although there
may be additional effects arising from acoustic phonons
like dephasing effects.

In the next three subsections, we subsequently inves-
tigate QDs with non-degenerate electron levels (III A),
with accidental degeneracies (III B), and with symmetry-
related degeneracies (III C). For each case, we develop
a simple non-orthogonal polaron-basis B∗, baptized the
“natural basis”, which spans the relevant Hilbert space
H∗. A similar formalism could be developed for holes
(although acoustic phonons may have to be taken into
account there), or for any many-particle complex such
as an exciton-, a trion- or a biexciton-based quantum
dot polaron. Stauber and Zimmermann23 showed that a
correction term must be introduced in the case of non-
neutral complexes.
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A. Natural Basis

We first consider a non-symmetric QD with N non-
degenerate electron levels µ. Accordingly there are
N(N+1)/2 linearly independent coupled modes, spanned
by the operators B†

µµ′ . By virtue of the coupling struc-
ture developed in section II C, the coupled regime of the
one-phonon model is properly represented by the sub-
space H∗ corresponding to gray filling in Fig. 1. It writes

H∗ ≡ HQDP
0 ⊕ H̃QDP

1 (27)

A vector set B∗, such that H∗ = vectB∗ is directly ob-
tained from (26),

B∗ =
{∣∣µ; 0

〉
, B†

µµ′
∣∣µ; 0

〉
≡

∑
q

M∗
µµ′q

∣∣µ;q
〉
∀µ, µ′

}
(28)

where we used the short hands
∣∣µ; 0

〉 ≡ a†µ
∣∣0〉

and∣∣µ;q
〉 ≡ a†µb†q

∣∣0〉
, with

∣∣0〉
=

∣∣0electrons

〉 ⊗ ∣∣0phonons

〉
being the polaron vacuum. The vectors in (28) are gener-
ally non-orthogonal but linearly independent and B∗ will
be called the “natural basis”. All natural basis states
are eigenstates of H0. For each electronic level µ there
is one natural basis state with zero phonons (free energy
εµ) and there are N natural basis states with one phonon
(free energy εµ+εLO). Since there are N electronic levels
µ, the dimension of the relevant subspace H∗ writes

dim(H∗) = card(B∗) = N(N + 1) (29)

The requirement to reduce the one-phonon subspace
HQDP

1 to H̃QDP
1 (section II C) reveals the simplifying

feature that many product states of electron states and
coupled phonons are irrelevant for the polaron structure
(e.g. B†

µ2µ3

∣∣µ1; 0
〉

/∈ B∗). Therefore, the number of QDPs
only scales as N2 and not as N3 (!), which one might ex-
pect from the number N of dot electron states and the
number ∝ N2 of coupled modes.

Fig. 2 shows the qualitative QDP spectrum in the case
of a QD with only three non-degenerate electronic states.
Gray bars denote additional QDPs that would appear in
an extended model including the interaction with two-
phonon states. Those are associated with free states in
H̃QDP ⊥

1 (i.e. the orthogonal complement of H̃QDP
1 inside

HQDP
1 ). The connections between free levels and QDP

levels (Fig. 2) are an important outcome of the natural
basis. They indicate the free levels from which specific
QDPs arise, if one could gradually introduce the Fröhlich
interaction. This picture allows a prediction of spectral
changes under dot size variation, since one can generally
assume that shifts increase when approaching a resonance
of the Fröhlich interaction (i.e. ∆ε = εLO).

In conclusion, a complete non-orthogonal polaron basis
called the “natural basis” (28) has been introduced. It
provides a mean for physical understanding of polaron
spectra involving low phonon numbers, and constitutes a
simplifying and powerful computational basis (see III D,
IV).

eQD potential
and electronic
wave functions

Free
levels

QDPs

FIG. 2: Qualitative structure of the polaron spectrum in the
case of three bound, non-degenerate electronic levels. Each
gray bar indicates 3 additional polaron levels that would result
from interactions with two-phonon states.

B. Accidental Electronic Degeneracies

This section and the next one point out additional
simplifications in the case of electronic degeneracies.
In particular, if a non-degenerate electronic spectrum
(e.g. Fig. 2) becomes partially degenerate, for example by
specific dot size adjustment, not only certain QDPs may
become degenerate, but some of them will analytically
align with free levels. We shall call such states “zero-shift
polarons” and show that they are nothing but uncoupled
states, susceptible to become QDPs as soon as the degen-
eracies are lifted. Thus the relevant Hilbert space H∗ can
be further reduced, such that spurious zero-shift polarons
are automatically eliminated.

In order to label accidental degeneracies, the electron
index is now expressed as µ ≡ (τ, i), where τ = 1 . . . n <
N is an energy index and i = 1, . . . , gτ a degeneracy
index. The eigenspaces of H0 inside the one-phonon
subspace HQDP

1 are indexed by γ = τ , and the or-
thogonal projectors Pγ ≡ Pτ on these eigenspaces write
Pτ =

∑gτ

i

∑
q

∣∣τ, i; q〉〈τ, i; q∣∣. Substituting these projec-
tors in (24) allows to write the relevant subspace H∗ as

H∗ ≡ HQDP
0 ⊕ H̃QDP

1

with H̃QDP
1 = vect

{PτHint
∣∣µ; 0

〉 ∀ τ, µ
} (30)

Expressing HQDP
0 , Pτ , and Hint in basis vectors

∣∣µ; 0
〉

and
∣∣µ;q

〉
, naturally provides a basis of H∗,

B∗ =
{∣∣τ, i; 0

〉
,

gτ′∑

i′=1

∑
q

M∗
τ i,τ ′ i′;q

∣∣τ ′, i′;q〉
∀ τ, τ ′, i

}
(31)

Its dimension is

dim(H∗) = card(B∗) = N(n + 1) (32)

where N is the total number of orthogonal electronic
states in the dot and n < N is the number of distinct
electronic energies (n=N would be the non-degenerate
case.) We note, that even though the number of polarons
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is smaller in the degenerate case, the number of modes in-
volved remains the same. Only the number of accessible
product states

∣∣electron
〉⊗

∣∣phonon
〉

is reduced. This can
be seen from (31), which, for a degenerate level τ , yields
entangled states similar to

∑gτ′
i′ B†

(τ,i)(τ ′,i′)

∣∣τ ′, i′; 0〉 ∀ τ, i.
As in the previous section, the natural basis (31) pro-

vides a qualitative prediction of the polaronic spectrum
and associates each polaron level with a free level (see
example Fig. 3). In particular, we emphasize that the
highest free level in the figure only yields 3 orthogonal po-
laron states and not 6 as one might expect from pulling
together the two uppermost free levels in Fig. 2. The
particular case of symmetry related degeneracies is now
addressed in the next subsection.

e

2 x

1 x

Free
levels

QDPs

1 x

1 x

1 x

1 x
1 x

1 x

1 x
1 x
1 x

QD potential
and electronic
wave functions

FIG. 3: Qualitative structure of the polaron spectrum in the
case of two electronic levels, one of which is twice degenerate.
Each gray bar indicates 3 more polarons that would result
from interactions with two-phonon states.

C. Symmetrical Quantum Dots

Additional degeneracies and simplifications may be ob-
tained in the case of QDs invariant under a set of symme-
try operations, generally described by the group of such
operations G, i. e. [H, g] = 0 ∀g ∈ G. In such a situation
all stationary states satisfy well defined transformation
laws, associated with an irreducible representation (ir-
rep) Γ of dimension dΓ, which also specifies the respec-
tive level degeneracy. For dΓ > 1, a degeneracy index
j = 1, . . . , dΓ, the so-called “partner function”, labels a
choice of orthogonal states within the same eigenspace.
Expressed for passive transformations, the laws read

θ(g)−1ψΓ,j =
dΓ∑

i=1

(
DΓ(g)

)−1

ij
ψΓ,i ∀g ∈ G (33)

where DΓ(g) is a set of representation matrices that char-
acterize the transformation laws of the partner function
basis, and can be chosen in a suitable way.

Since all stationary states can be associated with a well
defined symmetry (Γ, j), the Hamiltonian can be pre-
diagonalized by finding an orthogonal decomposition of
the Hilbert space in subspaces gathering only states with
symmetry (Γ, j). As for the one-phonon/one-electron QD

model, this symmetry decomposition writes

H∗ =
⊕

Γ,j

H∗Γ,j , H∗Γ,j ≡ PΓ,jH∗ (34)

where the orthogonal projectors PΓ,j on the subspaces
spanned by all the states that satisfy the transformation
laws (33) for a given symmetry (Γ, j) can be written as

PΓ,j =
dΓ

|G|
∑

g

(
DΓ(g)−1

)∗
jj

θ−1(g) (35)

The problem of finding the QDPs reduces to solv-
ing HQDP inside each relevant subspace H∗Γ,j individ-
ually. To provide these subspaces with suitable bases, we
require a symmetrized eigenstate basis relative to H0,
i.e. each basis state satisfies the transformation (33) for
its particular symmetry (Γ, j). Such bases necessarily
exist, since H0 obeys the same symmetry as H. To
start with we symmetrize the electron subsystem and the
phonon subsystem separately, i.e.

electron :
{∣∣τ, i〉} ←→ {∣∣Γe, je, αe

〉}

phonon :
{∣∣0〉

,
∣∣q〉} ←→ {∣∣0〉

,
∣∣Γph, jph, αph

〉} (36)

αe is usually a sequential index with energy, whereas αph

represents a continuous degeneracy index because of the
assumption of LO-phonon monochromaticity. The ex-
plicit transformations (36) can be more subtle than an-
ticipated. An example will be developed in detail for the
C3v symmetry group in section IV A. These symmetrized
bases allow the construction of a symmetrized basis of
the tensorial products using generalized Clebsch-Gordan
coefficients C

Γ,Γe,Γph

j,je,jph
(in the sense of point groups),

(a)
∣∣Γ, j; Γe, αe; 0

〉
=

∣∣Γe = Γ, je = j, αe

〉⊗
∣∣0〉

(37)
(b)

∣∣Γ, j; Γe, αe; Γph, αph

〉

=
∑

je,jph

C
Γ,Γe,Γph

j,je,jph

∣∣Γe, je, αe

〉⊗
∣∣Γph, jph, αph

〉

Here Γ and j refer to the overall symmetry and Γe and
Γph satisfy Γ ⊆ Γe ⊗ Γph. The phonon vacuum is always
symmetrical, Γph = A1, and hence the overall representa-
tion of a state with zero phonons will always be identified
with the electron representation, Γ = Γe (eq. 37).

A symmetrized expression of the relevant subspace H∗
immediately results from equation (30) by replacing the
electronic energy index τ with the pair index (Γe, αe).
Expressing HQDP

0 and PΓe,αe,1 ph in terms of the sym-
metrized product basis (37) directly leads us to a set of
non-orthogonal basis vectors, each of which transforms
according to (33) for a particular symmetry (Γ, j). Those
vectors can be regrouped in different “natural bases” B∗Γ,j
associated with the different subspaces H∗Γ,j defined in
(34). The expression of those vectors can be further sim-
plified using the selection rule for the Fröhlich matrix
elements, which results directly from the transformation
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laws and the invariance of the Hamiltonian,
〈
Γ, j; Γe, αe; Γph, αph

∣∣Hint
∣∣Γ′, j′; Γ′e = Γ, αe; 0

〉
= 0

unless (Γ, j) = (Γ′, j′)

For the remaining non-vanishing matrix elements, we
shall use the notation

MΓ,j
(Γe,αe,Γph,αph);α′e

≡ (38)
〈
Γ, j; Γe, αe; Γph, αph

∣∣Hint
∣∣Γ, j; Γ, α′e; 0

〉

Finally, the natural bases B∗Γ,j write

B∗Γ,j =





∣∣Γ, j; Γ, αe; 0
〉
,∑

Γph,αph
MΓ,j

(Γ′e,α′e,Γph,αph);αe

× ∣∣Γ, j; Γ′e, α
′
e; Γph, αph

〉
∀ αe, Γ′e, α

′
e





(39)

The sum goes over all indices, but one assumes that the
Clebsch-Gordan coefficients C vanish, when Γph does not
satisfy a selection rule Γ ⊆ Γe ⊗ Γph. These bases are
mutually orthogonal, but the vectors in each individual
basis remain non-orthogonal.

The overall symmetry index of an arbitrary natural ba-
sis state is always equal to the symmetry index of the in-
volved pure electron state (zero-phonon state), see equa-
tions (38,39). Hence, if an existing representation Γ is
absent in the considered set of bound electrons, there are
no Γ-like polaron states, even though we necessarily have
Γ-like phonon states!

Like in the previous two sections the natural bases (39)
provide a prediction of the polaronic spectrum. Fig. 4
shows the particular case of two bound electronic levels,
where the second level is twice degenerate by virtue of the
underlying dot symmetry. In particular, we emphasize
the appearance of degenerate polaron levels, which can
be associated with both, a degenerate or non-degenerate
electron level.

The dimensionality of the different subspaces H∗Γ,j can
be derived from the number of natural basis states for a
given symmetry (Γ, j),

dim(H∗Γ,j) = card(B∗Γ,j) = nΓ(1 + n) (40)

nΓ is the number of distinct electronic energies with a
given symmetry Γ (αe = 1, . . . , nΓ), and n denotes the
total number of distinct electronic energies (n =

∑
Γ nΓ).

The dimension (40) is independent of the partner func-
tion j in agreement with the feature that those functions
can be defined arbitrarily inside a given representation
Γ. Since

∑
(Γ,j) dim(H∗Γ,j) equals dim(H∗), given in (32),

expression (40) is a consistent refinement of the full di-
mension.

D. Computational Aspects

Finding the polaron spectrum of the one-electron/one-
phonon model reduces to diagonalizing the Hamiltonian
HQDP inside the low dimensional subspace spanned by

e

2 x

2 x
1 x

2 x

2 x

1 x

1 x
1 x

Free
levels

QDPsQD potential
and electronic
wave functions

FIG. 4: (Color online) Qualitative structure of the polaron
spectrum in the case of two electronic levels, one of which is
twice degenerate due to the dot symmetry. The levels corre-
spond to two different representations Γ marked in red and
blue/green. The latter has two dimensions, characterized by
the function j. Each gray bar indicates 3 more polarons that
would result from interactions with two-phonon states.

the natural basis B∗ given in (28), (31) or (39), depend-
ing on the physical situation. Although the number of
Fröhlich matrix elements for the interaction with LO-
phonons has been minimized by the subspace reduction,
their prerequisite computation can be numerically inten-
sive for the arbitrary 3D wavefunctions that one should
consider in a general case (see section IV where a single
wavefunction is typically sampled on 106 points). To al-
leviate this issue we have developed an original adaptive,
irregular discretization of the reciprocal space for lattice
modes, and shown that it was an efficient method, also
applicable when working directly with a non-orthogonal
basis.

The numerical benefit of an irregular reciprocal space
discretization relies on the fast variation of the Fröhlich
matrix elements in function of the normal mode wave
vector q in certain well localized domains. Increasing
the local point density only in those domains remarkably
improves the numerical precision with a minor increase of
the required computational resources. To generate a well
adapted irregular q-space discretization, we start with a
regular coarse mesh covering the first Brillouin zone of
the underlying lattice. Then the various Fröhlich ma-
trix elements are evaluated for all wave vectors q of the
given mesh. This requires a preliminary computation
of the volumes associated with each mesh node, taken
as the volume of the respective Wigner-Seitz cells (Ap-
pendix VIIC). The nearest neighbors with the highest
difference between their Fröhlich elements are added a
new node in between, which provides the initial mesh for
the next iteration. This algorithm is repeated until the
maximal difference between neighboring Fröhlich matrix
elements falls below a preset threshold. Fig. 5 shows the
Wigner-Seitz cells generated with this technique in the
case of the first Brillouin zone of a body-centered cubic
lattice.

After the generation of the irregular q-space discretiza-
tion and the computation of the respective Fröhlich ma-
trix elements, the set of natural basis vectors is evaluated,
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(a) (b)

(d) (c)

FIG. 5: (Color online) Polygonal Wigner-Seitz cells of the
irregular q-space discretization. (a)-(c) zoom into first Bril-
louin zone of a BCC lattice. (d) A few selected Wigner-Seitz
cells from a region similar to (c).

allowing to diagonalize the relevant Hamiltonian HQDP .
Let us finally evaluate the numerical value of working

with a non-orthogonal basis. The sole consequence is that
the standard eigenvalue problem becomes a generalized
eigenvalue problem, that is an equation of the type

¯̄HQDP
∣∣ψ〉

= ε ¯̄S
∣∣ψ〉

, (41)
¯̄HQDP

αα′ ≡ 〈
α
∣∣HQDP

∣∣α′〉, ¯̄Sαα′ ≡
〈
α|α′〉 6= δα,α′

where
∣∣α〉

are the natural basis states, and ¯̄Sαα′ is the
so-called ”mass matrix”. This trade-off is advantageous,
since optimized packages for the generalized eigenvalue
problem are widely available, and one gets rid of an addi-
tional basis change involving a Gram-Schmidt decompo-
sition (often requiring enhanced precision for small scalar
products). This is a positive numerical byproduct of the
non-orthogonal theory.

With the set of tools presented above, a spectral preci-
sion down to 0.01meV for typical QDPs can be reached in
characteristic computation times of a few minutes using
a present-day standard processor (3 GHz, 32 bit). The
most computer intensive part is the preliminary evalua-
tion of the Fröhlich matrix elements.

IV. APPLICATION TO PYRAMIDAL QDS

A. Symmetrical Model and Non-Orthogonal Basis

In this section, we apply the minimal model for the
non-orthogonal theory (section III) to a realistic pyrami-
dal GaAs/AlGaAs QD.27 This dot is part of a complex

heterostructure represented by the geometrical model
shown in Fig. 6a.29 We will take full advantage of the un-
derlying C3v-symmetry group, which exhibits only three
irreps A1, A2 and E. The latter is two-dimensional
and a possible basis results from symmetrizing E-states
with respect to the symmetry plane σ1 (spanned by the
[111] and [112] crystalline directions in GaAs/AlGaAs).
Thereby the partner function j = ± is identified with the
parity index relative to σ1. In graphical representations
we shall consistently apply the color scheme: A1 (red),
A2 (yellow), E+ (blue), E− (green). QDPs will be com-
puted using the symmetrized natural basis introduced in
section III C. This basis will be derived analytically in
three stages: (1) individual symmetrization of electronic
and phononic eigenstates of H0, (2) construction of a
symmetrized product basis using Clebsch-Gordan coef-
ficients, and (3) derivation of the symmetrized natural
bases for the relevant subspaces H∗Γ,j .

First, we shall find symmetrized electron and phonon
bases. As for the bound electron, all eigenstates of H0 are
automatically symmetrized and hence the task reduces to
finding these eigenstates. This was recently achieved by
Michelini et al..29 using an effective mass model. For a
dot height h = 10nm, there are two A1-like levels (non-
degenerate) and one E-like level (twice degenerate) as
shown in Fig. 6b. In the standard notation of section
III C, i. e.

∣∣Γe je, αe

〉
, those states write

{∣∣A1, 1
〉
,
∣∣E ± 〉

,
∣∣A1, 2

〉}
electron basis (42)

where the index je has been omitted in the case of the
one-dimensional A1-representations and the index αe has
been omitted for the unique E-level. We note that there
are no A2-like electron states at low energy, which imme-
diately predicts that there will be no A2-like QDPs (sec-
tion III C). For the phonons (taken as bulk phonons) the
symmetrization is inasmuch different as the eigenstates
of H0, such as plane waves ξq(x), are not automatically
symmetrized. This feature relies on the monochromatic-
ity assumption rendering all normal modes degenerate.
A symmetrized eigenstate basis is properly derived in
Appendix VII D. The resulting basis states superpose
six (or four) plane waves, such that the directions of the
different wave vectors are mutually related by symmetry
operations (see Fig. 6c). We shall label such states with
the respective vector q̃ belonging to the subset A, which
constitutes a sixth of the reciprocal space. In the case
of E-like superpositions there are two orthogonal states
associated with the same vector q̃. They will be distin-
guished through the additional index χ = 1, 2 (discussion
in Appendix VII D). Finally the phonon basis writes

{ ∣∣0〉
,
∣∣A1, q̃

〉
,
∣∣A2, q̃

〉
,∣∣E±, q̃, χ

〉
}

phonon basis (43)

where
∣∣0〉

is the phonon vacuum state (0meV), whilst all
other states are one-phonon states (35.9meV).

Second, we construct a symmetrized product basis
from (42) and (43) according to Eq.(37). The explicit
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FIG. 6: (Color) (a) Numerical model29 of realistic het-
erostructure with pyramidal QD, vertical quantum wire
(VQWR), vertical quantum wells (VQWs) and lateral quan-
tum wells (LQWs). (b) Isosurfaces of envelope functions of
the stationary single electron states. (c) Particular plane wave
superpositions of symmetrized one-phonon basis. The length
of the arrows represents the relative amplitude and dashed
arrows have opposite phase.

derivations given in Appendix VII E yield states of the
form

{ ∣∣Γ j; Γe, αe; 0
〉
,∣∣Γ j; Γe, αe; Γph, q̃, χ

〉
}

product basis (44)

where the first ket represents states with zero phonons
and the latter states with one phonon.

Third, we write the natural basis of the relevant
Hilbert subspace of H∗ according to the general the-
ory (section III C). This basis decomposes in symmetry-
subspaces H∗A1

(8 dimensions), H∗E+ (4 dimensions),
H∗E− (4 dimensions). Yet, in our particular case the most
energetic natural basis states yield energies above the
first two-phonon state. To remain consistent with the
one-phonon assumption, we shall neglect those states.
Thereby the dimensions reduce to 6 (H∗A1

), 3 (H∗E+)
and 3 (H∗E−). The respective natural bases result from
the general expressions (39) and are given in Tab. I and
Tab. II.

meV expressed as symmetrized product states subspace

43.1
∣∣A1; A1, 1; 0

〉
H∗A1,179.0

∑
q̃

∣∣A1; A1, 1; A1, q̃
〉〈

...
∣∣Hint

∣∣A1; A1, 1; 0
〉

108.1
∑

q̃,χ

∣∣A1; E; E, q̃, χ
〉〈

...
∣∣Hint

∣∣A1; A1, 1; 0
〉

84.9
∣∣A1; A1, 2; 0

〉
H∗A1,279.0

∑
q̃

∣∣A1; A1, 1; A1, q̃
〉〈

...
∣∣Hint

∣∣A1; A1, 2; 0
〉

108.1
∑

q̃,χ

∣∣A1; E; E, q̃, χ
〉〈

...
∣∣Hint

∣∣A1; A1, 2; 0
〉

TABLE I: Natural basis states of the subspace H∗A1 . The bra〈
...

∣∣ is the adjoint of the preceding ket. The two subspaces
H∗A1,1 and H∗A1,2 are defined by the three basis vectors on
their left. They constitute so-called “weakly coupled strong
coupling regimes”, discussed in section IVC.

meV expressed as symmetrized product states

72.2
∣∣E±; E; 0

〉

79.0
∑

q̃,λ

∣∣E±; A1, 1; E, q̃, λ
〉〈

...
∣∣Hint

∣∣E±; E; 0
〉

108.1
∑

Γph,q̃,χ

∣∣E±; E; Γph, q̃, χ
〉〈

...
∣∣Hint

∣∣E±; E; 0
〉

TABLE II: Natural basis states of subspaces H∗E+ and H∗E−.
The bra

〈
...

∣∣ is the adjoint of the preceding ket.

B. Stationary States and Strong Coupling

The problem of finding the stationary dot states,
i.e. QDPs, consists in the eigenvalue problem

HQDP
∣∣Γ j,m

〉
= εΓ,m

∣∣Γ j, m
〉

(45)

where m is a sequential energy index inside a particular
symmetry (Γ, j). This eigenvalue equation was solved in-
dividually inside each of the three decoupled subspaces
H∗A1

, H∗E+ and H∗E− using the enhanced matrix diago-
nalization method outlined in section IIID. The three
resulting spectra are given in Fig. 7 (red, green, blue).
A geometrical representation of the corresponding po-
laron states is shown in Fig. 8, where the closed surfaces
are isosurfaces of the electronic and vibrational probabil-
ity density functions. Those functions were obtained by
computing the respective partial traces,

ρlattice(x) =
〈
x
∣∣Trelectron

(∣∣Γ j, m
〉〈

Γ j, m
∣∣
)∣∣x〉

(46)

ρelectron(x) =
〈
x
∣∣Trlattice

(∣∣Γ j, m
〉〈

Γ j, m
∣∣
)∣∣x〉

(47)

The two-dimensional representation E necessarily ex-
hibits a spectrum consisting of twice degenerate levels,
each of which is associated with one state in H∗E+ and
one state in H∗E−. Each superposition c+

∣∣E+,m
〉

+
c−

∣∣E−,m
〉

is again a stationary state.
Both the ground level and the first excited level yield

negative energy shifts. This is consistent with the gen-
eral feature that the ground level of each representa-
tion is necessarily lowered with respect to correspond-
ing free level. The numerical values of these shifts are
∆ε = −2.0 meV and ∆ε = −2.5 meV . The same
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FIG. 7: (Color) Spectrum of low energy quantum dot polarons
(QDPs). Inside each symmetry subspace the states have been
labeled with an energy index m, such that m = 1 corresponds
to lowest energy state of a given symmetry.

shifts computed with 2nd order perturbation theory are
∆ε = −7.0 meV and ∆ε = −17.4 meV , respectively.
This manifest large failure of a perturbative approach
clearly confirms the existence of a strong coupling inside
both irreps (A1, E).

C. Coupling Substructure

For further characterization of the coupling regime it
is interesting to consider the two state sets S1 and S2,
defined as

S1 ≡
{∣∣A1, 1

〉
,
∣∣A1, 3

〉
,
∣∣A1, 6

〉}

S2 ≡
{∣∣A1, 2

〉
,
∣∣A1, 4

〉
,
∣∣A1, 5

〉} (48)

The A1-states of Fig. 8 have been ordered according to
these sets. We demonstrated numerically that states in
S1 are to a good approximation contained in the subspace
H∗A1,1 ⊂ H∗A1

defined in Tab. I. Indeed, the norms of
their projections on H∗A1,1 exceed 95% of the full norms.
With the same accuracy the states in S2 are contained
in H∗A1,2 ⊂ H∗A1

. In other words, the two subspaces
H∗A1,1 and H∗A1,2 appear reasonably decoupled, although
the whole subspace H∗A1

≡ H∗A1,1 ⊕ H∗A1,2 constitutes
a strong coupling regime. Therefore the strong cou-
pling regime must reside inside the two subspaces H∗A1,1
and H∗A1,2 individually, and they may be referred to as
“weakly coupled strong coupling regimes”. The physical
reason for this particular structure relies in the geome-
try of the vibrational density function ρlattice(x). Fig. 8
shows that states in S1 have a vibrational component,
which is vertically centered in the dot, whereas the states
in S2 have two centers of vibration splitting the isosur-
face in two parts. Indeed the subspace H∗A1,1 is spanned
by two one-phonon states with vertically centered vibra-
tional density and one zero-phonon state with centered

Polaron
State

Energy
[meV]

1-phonon
probability

Electron iso-
probability function

Phonon iso-
probability function

|A1,1> 41.3 4.2%

|A1,3> 80.4 96.3%

|A1,6> 108.5 99.5%

|A1,2> 78.4 92.0%

|A1,4> 85.4 8.4%

|A1,5> 108.2 99.6%

|E+,1> 69.7 13.6%

|E+,2> 80.0 90.2%

|E+,3> 109.6 96.2%

|E–,1> 69.7 13.6%

|E–,2> 80.0 90.2%

|E–,3> 109.6 96.2%

FIG. 8: (Color) Geometrical representation of QDPs. The
two right columns show isosurfaces of the electronic and vi-
brational probability density functions in direct space.

electronic density. The resulting overlap leads to a strong
interaction between electrons and phonons. The same
conclusion applies to the subspace H∗A1,2, where the den-
sity functions are vertically split in two parts. One the
other hand, this picture reveals that the mutual overlap
between H∗A1,1 and H∗A1,2 is considerably smaller.

The concept of weakly coupled subspaces H∗A1,1 and
H∗A1,2 provides a direct tool for interpretation of the spec-
trum in Fig. 7. In particular, the ground levels of each
subspace, i.e.

∣∣A1, 1
〉

and
∣∣A1, 2

〉
, are necessarily lowered

relative to the corresponding free levels. Analogically,
the most excited levels of each subspaces, i.e.

∣∣A1, 5
〉

and
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∣∣A1, 6
〉
, are both raised. Their mutual splitting remains

very small as they are to a good approximation uncou-
pled.

Finally, we emphasize that the novel concept of
“weakly coupled strong coupling regimes”, represented
by the subspaces H∗Γ j,1 and H∗Γ j,2,. . ., is very general and
potentially applicable to all QDs. If the matrix element
integral is close to zero due to the mutual orthogonal-
ity of the electronic wave functions, these subspaces can
be treated as decoupled in a good approximation. This
idea is straightforward when working with the natural
basis, and thus represents a further advantage of using
non-orthogonal basis states.

D. Entanglement measure and strong coupling,
decoherence and relaxation

An alternative characterization of the strong coupling
is reflected in the entanglement of stationary dot states,
i.e. QDPs. We have computed the entanglement between
electronic and and phononic coordinates using the stan-
dard measure introduced by Bennett et al..30 For pure
states,

Ent
(∣∣Γ j,m

〉) ≡ −
N∑

i=1

|ci|2 logN |ci|2 (49)

where the coefficients ci are given by the diagonal
Schmidt decomposition

∣∣Γ j, m
〉

=
N∑

i=1

ci

∣∣ei

〉⊗
∣∣phi

〉
(50)

It is known that this form always exists for every par-
ticular ket

∣∣Γ j, m
〉
, but the computation of the

∣∣Γ j,m
〉
-

dependent orthogonal vectors
{∣∣ei

〉}
and

{∣∣phi

〉}
, in the

electronic and phononic Hilbert spaces respectively, now
requires a preliminary orthogonalization of the quantum
dot phonon basis B†

µµ′
∣∣0〉

which can be elegantly per-
formed via a Choleski decomposition of the Λ matrix.
A subsequent singular value decomposition (SVD) of the
coefficient matrix in the tensorial product basis will de-
liver ci. It is remarkable that the sum over i in (50) can be
limited to the number of electron states N because of the
properties of the SVD. The entanglement measure (49)
can vary between 0 (non-entangled) and 1 (fully entan-
gled), and is also often equivalently called the ”entropy
of mixing” of the two subsystems in state

∣∣Γ j,m
〉
.

Tab. III shows the entanglement of the QDPs pre-
sented in Fig. 8. Weakly entangled states (Ent . 0.1) are
nearly simple product states of electrons and phonons.
In the present case, such a picture applies to the two
QDPs

∣∣A1, 1
〉

and
∣∣A1, 3

〉
. Numerically, they consist

to 99.5% of two natural basis states, which both in-
volve the same electronic state

∣∣A1, 1
〉

(first two basis
states in Tab. I). All other QDPs are strongly entan-
gled (Ent & 0.1) with no adequate perturbative pic-
ture. Particularly strong entanglement is found in the

states
∣∣A1, 5

〉
and

∣∣A1, 6
〉
, which involve peculiar Bell-

state superpositions inside the E-representation of the
form

∣∣E +
〉 ⊗

∣∣E +
〉

+
∣∣E − 〉 ⊗

∣∣E − 〉
. This of course

suggests a general tendency to find particularly strongly
entangled polarons in dots with symmetry related degen-
eracies.

State Entanglement Phonon Number Relax. Factor∣∣A1, 1
〉

0.023 0.042 0.001∣∣A1, 3
〉

0.007 0.963 0.007∣∣A1, 6
〉

0.523 0.995 0.520∣∣A1, 2
〉

0.203 0.920 0.186∣∣A1, 4
〉

0.222 0.084 0.019∣∣A1, 5
〉

0.517 0.996 0.515∣∣E±, 1
〉

0.256 0.136 0.035∣∣E±, 2
〉

0.245 0.902 0.221∣∣E±, 3
〉

0.229 0.962 0.220

TABLE III: Entanglement, 1-phonon probability and heuris-
tic “relaxativity measure” of the Quantum Dot Polarons
(QDPs) in the pyramidal dot with h = 10mn.

Finally, we address a possible connection between en-
tanglement and phonon-mediated decoherence and relax-
ation. A simple model of such decoherence and relaxation
would account for a weak bulk interaction between cou-
pled LO-phonons and uncoupled LO-phonons or between
coupled LO-phonons and LA-phonons. Such weak inter-
actions maybe treated perturbatively and typically result
in a finite lifetime for QDPs, which would otherwise be
everlasting. One may expect that the lifetime depends
on the entanglement between electronic and phononic
coordinates, since entanglement indicates strong quan-
tum correlations that could effectively translate phonon-
phonon interactions to electron state hoppings. From
this picture, we expect that the lifetime also scales with
the weight of the phonon component. Hence, we heuris-
tically propose a “relaxativity measure” for QDPs, de-
fined as the product of the entanglement and the average
phonon number

Rel
(∣∣Γ j, m

〉) ≡ 〈
Γ j, m

∣∣ ∑

λλ′
(Λ−1)λ′λB†

λBλ′
∣∣Γ j, m

〉

×Ent
(∣∣Γ j, m

〉)
(51)

In the present one-phonon model this measure varies be-
tween 0 (everlasting) and 1 (short coherence time, say
∼ 1ps). At thermal equilibrium, the dot state is repre-
sented by a density matrix exhibiting a high probability
of states with a low relaxativity measure and vise versa.
This measure does not really measure the relaxation since
relaxation also implies other factors like resonances and
population of final states, this is why we speak of ”re-
laxativity”. It has the status of a rough heuristic guess,
since it is not the result of a proper relaxation model
describing realistically phonon-phonon interactions and
in particular neglects any dependence on the particular
geometry.
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E. Dot size variation

We shall now discuss the variation of the polaron spec-
trum as a function of a varying dot height h. Fig-
ure 9 shows the varying spectrum of H0 (free levels) and
the spectrum of HQDP (quantum dot polarons) in the
restricted energy band [40 meV, 120 meV ] (quadrati-
cally extrapolated from explicit computations of the dot
heights 10 nm, 7.5 nm and 5 nm). To gain clarity and
to remain consistent with the disappearance of certain
free levels for smaller dots, we have restricted the graph
to the two lowest levels of the two subspaces H∗A1,1 and
H∗E+. The latter is of course degenerate with H∗E− and
the respective levels are twice degenerate.
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FIG. 9: (Color online) Spectrum in function of the dot height
h. (dashed lines) free electronic energies obtained by diago-
nalizing H0, (solid lines) polaron energies obtained by diago-
nalizing HQDP .

There are three relevant free energies, the electronic
ground level with symmetry A1 (red dashed line), the
first excited level with symmetry E (blue dashed line),
and the electronic ground level combined with one
phonon (black dashed line). The latter two undergo a
crossing in the vicinity of the dot height h = 2.5nm.
By virtue of the resulting resonance, the two E-like po-
laron levels (blue solid lines) exhibit maximal energy
shifts around h = 2.5nm (∆ε ≈ 5 meV ) giving rise to
a level anti-crossing. On the other hand, the decreasing
resonance for increasing dot height, leads to a true cross-
ing between the first excited E-like polaron level (upper
blue solid line) and the first excited A1-like polaron level
(upper red solid line). Such a true crossing is consis-
tent with the strict analytical decoupling stemming from
group theoretical arguments (i.e. different irreps).

V. INSIGHTS ON THE LOW ENERGY
SCHEME IN QDS

We shall now expand the results to a very general
class of QDs, including pyramidal, spherical, cubic or
even cylindrical ones. For all these systems we uncover
an analogous low energy spectrum, clear connections be-
tween polarons and free levels, symmetry properties and
qualitative dot size dependencies.

Explicitly, we consider all dots with a non-degenerate
electronic ground level and a twice degenerate first elec-
tronic excitation. These dots include the special but pre-
dominant class of dots with Cnv symmetry with n ≥ 3.
Qualitatively, they yield a low-energy polaron spectrum
consisting of two shifted electron levels and a splitted
electron+phonon level, see Fig. 10. Group theory reveals
three independent substructures (red, green, blue), where
two are mutually degenerate (green/blue). This struc-
ture can be derived from the natural basis (39), or may
be obtained from the spectrum studied above (Fig. 7) by
suppressing all QDPs with higher energies or associated
with the third electron level.

The fine dashed lines in Fig. 10 link each QDP level
with the free level, from which it would arise, if one could
continuously turn on the Fröhlich interaction. These con-
nections are important for understanding the QDP spec-
trum, as levels within the same representation (here the
levels with the same color) generally repel each other
under the interaction. The relative position of the first
excited polaron in the invariant representation (here∣∣A1, 3

〉
) depends on whether the free electronic energy

spacing is larger or smaller than the constant phonon
energy εLO, see Fig. 10a and Fig. 10b. In case (a),
the state

∣∣A1, 3
〉

can fall between the second electron
level (green/blue) and the electron+phonon level (dashed
level). In (b), the same state lies always above the free
electron+phonon level. One can generally pass from sit-
uation (a) to (b) by a dot size increase rendering the
electronic energy spacing smaller than εLO.

Further, the links between free levels and QDP levels
allow to predict the variation of QDP levels with varying
dot size. In general, the shifts become larger as one ap-
proaches the resonance, which is the transition between
case (a) and (b). The varying spacing between the up-
per two free levels leads to a changing shift of the two
degenerate QDP levels (green/blue). These changes are
represented by the vertical arrows for increasing dot size.
The dependance gets reversed when passing from case
(a) to (b), due to the anti-crossing at the resonance. The
shift of the two symmetrical polaron levels (red) is dot
size independent, because of their symmetry-decoupling
from the moving free level (green/blue) and the constant
phonon energy εLO.

These findings are very generic. For example they
agree with the results of Verzelen et al.21 for the case
of cylindrical dots (height/radius=12/18). Case (a) is
obtained for radii < 13 nm, whilst case (b) correspond
to radii > 13 nm. Following our discussion, it is straight-
forward to understand that in their case

∣∣1± 〉
lies below
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∣∣S1
〉
, that

∣∣2 ± 〉
lies above

∣∣P ± 0
〉

and that
∣∣S̃1

〉
can

only lie below
∣∣P ± 0

〉
for radius < 13 nm. We also see

that the shifts of
∣∣S̃0

〉
and

∣∣S̃1
〉

do not depend on the
dot size due to symmetry decoupling and the constant
spacing between

∣∣S0
〉

and
∣∣S1

〉
.

A1 ,1

A1 ,3

E±,2

E±,1

(b)(a)

A1 ,1

A1 ,3

E±,2

E±,1

e- + ph e- + ph

e- (2x)

e-e-

e- (2x)

free levels QDPsQDPsfree levels

(const)

(const)

FIG. 10: (Color online) Fundamental level structure for QDs
with Cnv-like symmetry with n ≥ 3. (a) electronic en-
ergy spacing exceeds phonon energy εLO, typically smaller
dots. (b) electronic energy spacing smaller than εLO, typ-
ically larger dots. The arrows show the level changes with
increasing dot size.

VI. SUMMARY

In this work we uncovered the substantial advantage
of the direct use of non-orthogonal creation and anni-
hilation operators to treat polarons in quantum struc-
tures. Starting from a general viewpoint, we fully re-
formulated the polaron problem in terms of those opera-
tors that naturally appear in the interaction Hamiltonian
and generate the phonons relevant for individual transi-
tions between electronic eigenstates. We also provided a
complementary basis for all non-coupling phonons, which
play a sensitive role in relaxation processes mediated by
phonon-phonon interactions. Even though one might a
priori be skeptic with the use of non-orthogonal objects,
this approach proved mathematically elegant and fruit-
ful for physical insights. In particular, we found a nested
structure in the electron-phonon coupling, which allowed
us to identify a non-trivial rule to truncate the Hilbert
space in the case of a finite number of phonons. This fea-
ture was consistently applied to a general QD structure
in a one-electron/one-phonon model, and lead to a novel
polaron basis, baptized the “natural basis”. The latter
constitutes an efficient tool for computation and detailed
classification of quantum dot polarons (QDPs). Beyond
the case of general quantum dots, we also investigated de-
generate and symmetrical quantum dots using the appro-
priate mathematical instruments, namely group theory.
This revealed additional simplifications, degeneracies and
subclasses of QDPs.

As a realistic application we computed the low-energy
QDPs of recently manufactured pyramidal QDs with

C3v-symmetry. To this end an adaptive irregular dis-
cretization of the lattice mode space was developed,
which we used to compute the Fröhlich matrix elements.
The generalized eigenvalue problem stemming from the
direct use of non-orthogonal basis vectors was directly
fed into efficient matrix diagonalization software. In this
way, the requirement for computational resources was re-
markably decreased. The numerical results explicitly re-
vealed the spectral structure predicted from the natural
basis. 3D-visualizations of the stationary polaronic dot
states gave insight in the localization of both electronic
and phononic components and showed the different sym-
metry properties. Dot size dependent spectral investiga-
tions uncovered level crossings and anti-crossings, which
were consistent with the corresponding symmetry proper-
ties. Further, we could prove the existence of strong cou-
pling regimes for each symmetry representation through
explicit comparison with second order perturbation the-
ory. Yet, there was undoubtable numerical evidence for
the presence of very weakly coupled subspaces within
the strong coupling regimes. This led us to the con-
cept of “weakly coupled strong coupling regimes”. Using
the natural basis such subspaces could be understood in
terms of specifically different overlaps between electronic
wave functions and non-orthogonal vibrational modes.
We used Bennett’s entanglement measure to quantify the
coupling between electronic and phononic coordinates −
an idea that finally lead us to a heuristic “relaxativity
measure”. In the end, we discussed the low-energy spec-
trum of an important class of symmetric QDs (including
spherical, cubic and cylindrical dots), and showed quali-
tative predictions of the level structure and dot size de-
pendance, valid as much for the general case as for our
specific C3v pyramidal QD.

We thank PaweÃl Machnikowski and our referees for
their thorough and inspiring suggestions. Further, we
acknowledge partial financial support from the Swiss NF
project No. 200020-109523.

VII. APPENDIX

A. Derivation of the coefficients cqq′

In section II B, the coefficients cqq′ were defined as

B†
q ≡

∑

q′
cqq′bq′

† (52)

such that B†
q

∣∣0〉
= (11 − P) b†q

∣∣0〉
with P being the or-

thogonal projector onto vect{B†
λ

∣∣0〉}. By substitution
we find

∑

q′
cqq′bq′

†∣∣0〉
= (11− P) b†q

∣∣0〉
(53)

The projector P satisfies

PB†
λ

∣∣0〉
= B†

λ

∣∣0〉
(54)
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and can be decomposed as

P =
∑

λλ′
pλλ′B

†
λ

∣∣0〉〈
0
∣∣Bλ′ (55)

with complex coefficients pλλ′ . Substituting (55) in
(54) and using the commutation relations (6) yields the
unique solution pλλ′ = (Λ−1)λλ′ . Hence,

P =
∑

λλ′
(Λ−1)λλ′B

†
λ

∣∣0〉〈
0
∣∣Bλ′

=
∑

qq′

∑

λλ′
(Λ−1)λλ′L

∗
λqLλ′q′b

†
q

∣∣0〉〈
0
∣∣bq′

(56)

Substituting (56) into (53) finally exhibits the unique
solution

cqq′ = δqq′ −
∑

λλ′
(Λ−1)λλ′L

∗
λq′Lλ′q (57)

B. Demonstration of equation (22)

We want to find the p-phonon part H̃QSP
p of a subspace

S, defined as

S ≡ vect
{

e−iHQSP t
∣∣ϕ〉

: ∀ t, ∀ ∣∣ϕ〉 ∈ HQSP
p−1

}
(58)

In the following, we implicitly assume that
∣∣ϕ〉

goes
over all states of HQSP

p−1 (or, equivalently, over a basis
of HQSP

p−1 ). In the expansion of the exponential, the func-
tions 1, t, t2, t3, . . . are linearly independent. Thus,

S = vect
{

(HQSP )k
∣∣ϕ〉 ∀ k = 0, 1, . . .

}
(59)

We then replace HQSP by H0+Hint
+ +Hint

− , where Hint
+ is

the phonon creating term of Hint and Hint
− is the phonon

annihilating term (Hint = Hint
+ + Hint

− ),

S = vect
{

(H0 + Hint
+ + Hint

− )k
∣∣ϕ〉∀ k = 0, . . .

}
(60)

As we are interested in the p-phonon subspace of S,
the terms (H0 + Hint

+ + Hint
− )k can be significantly sim-

plified by retaining only the operator products increasing
the phonon number by one unit. These are the products,
which contain exactly one more Hint

+ than Hint
− . Fur-

ther, we want to respect the assumed truncation of the
phonon Fock space to at most p phonons, that is impos-
ing B†

λ

∣∣ϕ〉
= 0 ∀ ∣∣ϕ〉 ∈ HQSP

p (see section II C). Ex-
plicitly, we need to remove all products involving inter-
mediate (p+1)-phonon states (e.g. Hint

− Hint
+

2∣∣ϕ〉
, which

involves the state Hint
+

2∣∣ϕ〉
). Applying these rules, the

terms (H0 + Hint
+ + Hint

− )k
∣∣ϕ〉

reduce to

k = 1 : Hint
+

∣∣ϕ〉

k = 2 : (H0Hint
+ + Hint

+ H0)
∣∣ϕ〉

k = 3 : (H02
Hint

+ + H0Hint
+ H0 + Hint

+ H02

+Hint
+

2
Hint
− + Hint

+ Hint
− Hint

+ )
∣∣ϕ〉

etc.

Since these vectors are used to span a collective subset,
we can merely clean the list by creating new superposi-
tions. Explicitly, we walk down the list from k = 1, 2, . . .
and subtract all the parts that are manifestly covered
by smaller k already. For k = 2, for example, we can
subtract Hint

+ H0
∣∣ϕ〉

from (H0Hint
+ + Hint

+ H0)
∣∣ϕ〉

, since
Hint

+ H0
∣∣ϕ〉

= Hint
+

∣∣ϕ′〉 with
∣∣ϕ′〉 ∈ HQSP

p−1 is already
spanned by the vectors associated with k = 1. Hence
the additional vectors from k = 2 can be reduced to
H0Hint

+

∣∣ϕ〉
. (vect{Hint

+

∣∣ϕ〉} and vect{H0Hint
+

∣∣ϕ〉} are
not necessarily linearly independent, but together they
certainly span the same subspace as all the vectors in
the list associated with k = 1 and k = 2.) We can then
apply the same procedure to k = 3 and find that all terms
but H02

Hint
+

∣∣ϕ〉
are manifestly spanned by the vectors

of k = 1 and k = 2. One quickly realizes that proceed-
ing in the same way, subsequently produces all the terms
H03

Hint
+

∣∣ϕ〉
, H04

Hint
+

∣∣ϕ〉
, etc. Hence,

H̃QDP
p = vect

{
(H0)kHint

+

∣∣ϕ〉 ∀ k = 0, 1, . . .
}

(61)

Using again the property that 1, t, t2, t3, . . . are linearly
independent functions of t, we finally find

H̃QDP
p = vect

{
e−iH0tHint

+

∣∣ϕ〉 ∀ t
}

(62)

which concludes the demonstration.

C. Expression of Hint for an irregular q-space
discretization

In the Fröhlich matrix elements (2), the quantization
volume V (direct space) dictates the underlying q-space
discretization, such that each q occupies a volume of
Ω = (2π)3/V . This can be seen by taking V as a cubic
volume with periodic boundary conditions, for which the
Fröhlich interactions was originally derived. If we use an
irregular space discretization with varying cell sizes Ω(q),
the constant quantization volume V must consequently
be replace by a function,

V → V (q) =
8π3

Ω(q)
(63)

In the present case, Ω(q) was taken as the Wigner-Seitz
volume around the point q in a given irregular reciprocal
space discretization.

D. C3v-Symmetrized Phonon Basis

We consider the symmetry group C3v with its six group
elements g = I (identity), g = C+

3 , C−3 (positive and neg-
ative 2π/3-rotation), g = σ1, σ2, σ3 (plane symmetries).
If

∣∣q〉
denotes the one-phonon state associated with the

plane wave mode ξq(x), symmetrized one-phonon states∣∣Γ, j,q
〉

can be obtained by
∣∣Γ, j,q

〉 ≡ αPΓ,j

∣∣q〉
=

∑

g∈C3v

cΓj(g)
∣∣R(g)q

〉
(64)
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where R(g) is the symmetry operation associated with
the group element g. PΓ,j is the projector on the sub-
space associated with the irrep Γ and the partner func-
tion j. α is a normalization factor defined up to a phase
factor by the normalization relations

〈
Γ, j,q|Γ, j,q

〉
= 1 ∀ Γ, j,q (65)

By projecting the nmodes basis states
∣∣q〉

on the four
subspaces associated with A1, A2, E+ and E−, one ob-
tains an overcomplete set of 4nmodes states, which nec-
essarily obeys 3nmodes relations of linear dependence.
Those relations can be identified with the symmetry
transformation relations,

A1 :
∣∣A1,R(g)q

〉
=

∣∣A1,q
〉 ∀g ∈ C3v (66)

A2 :
∣∣A2,R(g)q

〉
=

{
+

∣∣A2,q
〉

g = I, C+
3 , C−3

−
∣∣A2,q

〉
g = σ1, σ2, σ3

(67)

E :
∣∣E±,R(σ1)q

〉
= ±

∣∣E±,q
〉

∣∣E±,q
〉

+
∣∣E±,R(C+

3 )q
〉

+
∣∣E±,R(C−3 )q

〉
= 0

(68)

q
s

1

s
2

s
3

A

B

FIG. 11: Partition of the set of available wave vectors q. The
whole set can be obtained by applying symmetry operations
of the C3v group on the subset A.

For the irrep A1 the five non-trivial relations of (66)
for a given q allow to restrict the plane wave set {q} to
the sixth marked A in Fig. 11. The set {∣∣A1, q̃

〉
, q̃ ∈ A}

is orthonormal. An analog reasoning applies to the irrep
A2 based on the five non-trivial relations of (67). For the
irrep E, (68) yields two non-trivial relations for a given
vector q and a given partner function j = ±. Hence
the set {q} may be restricted to a third of its elements,
represented by A∪B in Fig. 11. Any two states

∣∣E, j, q̃
〉

and
∣∣E, j,R(σ2)q̃

〉
with q̃ ∈ A (and hence R(σ2)q̃ ∈ B)

are non-orthogonal. In order to achieve orthogonality
and to use one fixed vector set for all irreps, we introduce
the states

∣∣E±, q̃, χ = 1
〉 ≡

∣∣E±, q̃
〉∓

∣∣E±, σ2q̃
〉

∣∣E±, q̃, χ = 2
〉 ≡ ∣∣E±, q̃

〉± ∣∣E±, σ2q̃
〉 (69)

where q̃ ∈ A and hence R(σ2)q̃ ∈ B. This definition
completes the construction of the one phonon part of the
phonon basis (43). The new index χ = 1, 2 permits the

restriction of plane wave vectors to the sixth A and has
the following physical interpretation: All E-states with
χ = 1 involve one plane wave amplitude, whereas the
E-states with χ = 2 mix two different amplitudes (see
Fig. 6c).

The canonical transformation relating the sym-
metrized one-phonon basis to the plane wave basis {∣∣q̃〉}
results from the definitions (64) and (69) and the nor-
malization relation (65). We find,




∣∣A1, q̃
〉

∣∣A2, q̃
〉

∣∣E, +, q̃, 1
〉

∣∣E, +, q̃, 2
〉

∣∣E,−, q̃, 1
〉

∣∣E,−, q̃, 2
〉




= U




∣∣q̃〉
∣∣R(σ2)q̃

〉
∣∣R(C+

3 )q̃
〉

∣∣R(σ3)q̃
〉

∣∣R(C−3 )q̃
〉

∣∣R(σ1)q̃
〉




∀ q̃ ∈ A (70)

with the unitary transformation matrix

U =




1√
6

1√
6

1√
6

1√
6

1√
6

1√
6

1√
6

− 1√
6

1√
6

− 1√
6

1√
6

− 1√
6

1
2 − 1

2 0 0 − 1
2

1
2

1√
12

1√
12

− 1√
3
− 1√

3
1√
12

1√
12

1
2

1
2 0 0 − 1

2 − 1
2

1√
12

− 1√
12

− 1√
3

1√
3

1√
12

− 1√
12




(71)

E. C3v-Symmetrized Tensor Product Basis

Based on the symmetrized electron basis (42) and the
symmetrized phonon basis (43), we shall construct sym-
metrized product states. The zero-phonon state

∣∣0〉
be-

longing to the irrep A1, the symmetrized product states
involving zero phonons readily write,

∣∣A1; A1, αe; 0
〉 ≡ ∣∣A1, αe

〉⊗ ∣∣0〉
∣∣E±;E; 0

〉 ≡
∣∣E ± 〉⊗

∣∣0〉 (72)

where n = 1, 2 is the electronic energy index inside
A1. Semicolons separate intrinsic polaron, electron and
phonon indices. As for the symmetrized product states
involving one phonon, one uses Clebsch-Gordan coeffi-
cients,

∣∣A1; A1, αe; A1, q̃
〉 ≡ ∣∣A1, αe

〉⊗ ∣∣A1, q̃
〉

∣∣A1; E;E, q̃, χ
〉 ≡ 1√

2

(∣∣E +
〉⊗ ∣∣E+, q̃, χ

〉

+
∣∣E − 〉⊗

∣∣E−, q̃, χ
〉)

∣∣A2; A1, αe; A2, q̃
〉 ≡ ∣∣A1, αe

〉⊗ ∣∣A2, q̃
〉

∣∣A2; E;E, q̃, χ
〉 ≡ 1√

2

(∣∣E +
〉⊗ ∣∣E−, q̃, χ

〉

−∣∣E − 〉⊗ ∣∣E+, q̃, χ
〉)

∣∣E±; A1, αe; E, q̃, χ
〉 ≡

∣∣A1, αe

〉⊗
∣∣E±, q̃, χ

〉
∣∣E±; E; A1, q̃

〉 ≡
∣∣E ± 〉⊗

∣∣A1, q̃
〉

∣∣E±; E; A2, q̃
〉 ≡

∣∣E ∓ 〉⊗
∣∣A2, q̃

〉
∣∣E±; E; E, q̃, χ

〉 ≡ 1√
2

(∣∣E +
〉⊗

∣∣E±, q̃, χ
〉

∓∣∣E − 〉⊗ ∣∣E∓, q̃, χ
〉)
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where χ = 1, 2 is the additional phonon index used for
E-like one-phonon states.
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28 H. Fröhlich, H. Pelzer, and S. Zienau, Philos. Mag. 41, 221
(1950).

29 F. Michelini, M.-A. Dupertuis, and E. Kapon, Appl. Phys.
Lett. 84, 4086 (2004).

30 C. H. Bennett, H. J. Bernstein, S. Popescu, B. Schumacher,
Phys. Rev. A 53, 2046 (1996).


