31 research outputs found

    Xanthine oxidase/hydrogen peroxide generates sulfur trioxide anion radical (SO.−3) from sulfite (SO2−3)

    Get PDF
    AbstractIn the presence of hydrogen peroxide (H2O2), xanthine oxidase has been found to catalyze sulfur trioxide anion radical (SO.−3) formation from sulfite anion (SO2−3). The SO.−3 radical was identified by ESR (electron spin resonance) spin trapping, utilizing 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) as the spin trap. Inactivated xanthine oxidase does not catalyze SO.−3 radical formation, implying a specific role for this enzyme. The initial rate of SO.−3 radical formation increases linearly with xanthine oxidase concentration. Together, these observations indicate that the SO.−3 generation occurs enzymatically. These results suggest a new property of xanthine oxidase and perhaps also a significant step in the mechanism of sulfite toxicity in cellular systems

    Role of dipolar and exchange interactions in the positions and widths of EPR transitions for the single-molecule magnets Fe8 and Mn12

    Full text link
    We examine quantitatively the temperature dependence of the linewidths and line shifts in electron paramagnetic resonance experiments on single crystals of the single-molecule magnets Fe8_8 and Mn12_{12}, at fixed frequency, with an applied magnetic field along the easy axis. We include inter-molecular spin-spin interactions (dipolar and exchange) and distributions in both the uniaxial anisotropy parameter DD and the Land\'{e} gg-factor. The temperature dependence of the linewidths and the line shifts are mainly caused by the spin-spin interactions. For Fe8_8 and Mn12_{12}, the temperature dependence of the calculated line shifts and linewidths agrees well with the trends of the experimental data. The linewidths for Fe8_8 reveal a stronger temperature dependence than those for Mn12_{12}, because for Mn12_{12} a much wider distribution in DD overshadows the temperature dependence of the spin-spin interactions. For Fe8_8, the line-shift analysis suggests two competing interactions: a weak ferromagnetic exchange coupling between neighboring molecules and a longer-ranged dipolar interaction. This result could have implications for ordering in Fe8_8 at low temperatures.Comment: published versio

    Electronic structure of a Mn12 molecular magnet: Theory and experiment

    Get PDF
    金沢大学大学院自然科学研究科物質情報解析We used site-selective and element-specific resonant inelastic x-ray scattering (RIXS) to study the electronic structure and the electron interaction effects in the molecular magnet [Mn12 O12 (C H3 COO)16 (H2 O)4] 2C H3 COOH 4 H2 O, and compared the experimental data with the results of local spin density approximation +U electron structure calculations which include the on-site Coulomb interactions. We found a good agreement between theory and experiment for the Coulomb repulsion parameter U=4 eV. In particular, the p-d band separation of 1.8 eV has been found from the RIXS spectra, which is in accordance with the calculations. Similarly, the positions of the peaks in the XPS spectra agree with the calculated densities of p and d states. Using the results of the electronic structure calculations, we determined the intramolecular exchange parameters, and used them for diagonalization of the Mn12 spin Hamiltonian. The calculated exchanges gave the correct ground state with the total spin S=10. © 2007 The American Physical Society

    In vivo and in vitro proinflammatory effects of particulate air pollution (PM10).

    Get PDF
    Epidemiologic studies have reported associations between fine particulate air pollution, especially particles less than 10 mm in diameter (PM10), and the development of exacerbations of asthma and chronic obstructive pulmonary disease. However, the mechanism is unknown. We tested our hypothesis that PM10 induces oxidant stress, causing inflammation and injury to airway epithelium. We assessed the effects of intratracheal instillation of PM10 in rat lungs. The influx of inflammatory cells was measured in bronchoalveolar lavage (BAL). Airspace epithelial permeability was assessed as total protein in bronchoalveolar lavage fluid (BALF) in vivo. The oxidant properties of PM10 were determined by their ability to cause changes in reduced glutathione (GSH) and oxidized glutathione (GSSG). We also compared the effects of PM10 with those of fine (CB) and ultrafine (ufCB) carbon black particles. Six hours after intratracheal instillation of PM10, we noted an influx of neutrophils (up to 15% of total BAL cells) in the alveolar space, increased epithelial permeability, an increase in total protein in BALF from 0.39 +/- 0.01 to 0.62 +/- 0.01 mg/ml (mean +/- SEM) and increased lactate dehydrogenase concentrations in BALF. An even greater inflammatory response was observed after intratracheal instillation of ufCB, but not after CB instillation. PM10 had oxidant activity in vivo, as shown by decreased GSH in BALF (from 0.36 +/- 0.05 to 0.25 +/- 0.01 nmol/ml) after instillation. BAL leukocytes from rats treated with PM10 produced greater amounts of nitric oxide, measured as nitrite (control 3.07 +/- 0.33, treated 4.45 +/- 0.23 mM/1 x 10(6) cells) and tumor necrosis factor alpha (control 21.0 +/- 3.1, treated 179.2 +/- 29.4 unit/1 x 10(6) cells) in culture than BAL leukocytes obtained from control animals. These studies provide evidence that PM10 has free radical activity and causes lung inflammation and epithelial injury. These data support our hypothesis concerning the mechanism for the adverse effects of particulate air pollution on patients with airway diseases

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. Funding: Bill & Melinda Gates Foundation

    Relaxation of the magnetization of Mn-12 acetate

    Get PDF
    Contains fulltext : 112514.pdf (publisher's version ) (Open Access

    High-sensitivity electron paramagnetic resonance of Mn-12-acetate

    Get PDF
    Contains fulltext : 112508.pdf (publisher's version ) (Open Access

    Quantum tunneling of magnetization in Mn-12 acetate clusters

    No full text
    Contains fulltext : 112513.pdf (publisher's version ) (Closed access

    Single crystal EPR of Mn-12-acetate clusters

    No full text
    Item does not contain fulltex
    corecore