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The energy diagram of Mn12-acetate is probed close to the top of the anisotropy barrier using
a novel, high-sensitivity, electron paramagnetic resonance technique. Multiple resonances, and their
temperature dependence, are observed from 35 to 115 GHz, for a single high-quality crystal. The
data are sufficiently detailed to make extremely accurate comparisons with predictions based on a spin
S  10 Hamiltonian. Although overall agreement is good, we find evidence for possible inadequacies
of this model. [S0031-9007(98)05531-8]

PACS numbers: 75.45.+ j, 36.40.Cg, 76.30.–v

The Mn12 cluster complex [1],fMn12O12sCH3COOd16-
sH2Od4g ? 2CH3COOH ? 4H2O sMn12-Acd, has attracted
considerable interest due to indications that it exhibits
the phenomenon of macroscopic quantum tunneling of
magnetic moment (QTM) [2]. The core of the Mn12-
Ac cluster consists of a tetrahedron of four Mn(IV) ions,
each with S  3y2, surrounded by eight Mn(III) ions
with S  2. The clusters crystallize into a tetragonal
lattice in which the angular momentum is thought to be
completely quenched, and a Jahn-Teller distortion gives
rise to a strong axial anisotropy [1]. Superexchange leads
to a high spin ground state where the spins of the Mn(IV)
and Mn(III) ions are coupled parallel toS  6 and S 
16, respectively; the spins of the outer shell are directed
antiparallel to the spins of the inner ions. In the ground
state, therefore, the cluster may be treated as anS  10
object, with the spin preferentially aligned along thec axis
due to the axial anisotropy [3,4].

Magnetization studies have confirmed theS  10 char-
acter of Mn12-Ac [4]. In addition, high-field electron
paramagnetic resonance (EPR) studies on powders and
polycrystalline samples have provided considerable infor-
mation concerning the spin Hamiltonian of the system [3–
5]. Nevertheless, the precise nature of the relaxation of
the magnetization at low temperatures remains unclear.

To lowest order, the spin Hamiltonian may be written
H  D1S2

z 2 gmBB ? S [6]. Thus, pairs of6MS lev-
els are degenerate in zero magnetic field, whereMS is
the projection ofS along the sample’s easy (c, or z) axis.
The anisotropy constantD1 is known to be negative so
that theMS  610 levels lie lowest in energy, while the
MS  0 level lies highest. When the system is spin po-
larized by applying and removing a large magnetic field

sgmBB . S 3 D1d parallel to the sample’s easy axis, a
sizeable energy barrier inhibits the reversal of this moment;
the magnitude of this barrier is,102 3 D1 ø 44.5 cm21

[7]. In spite of this, considerable experimental evidence
suggests that the spin system is somehow able to over-
come this barrier at low temperatures [8]. Below about
3 K, steps are observed in the hysteresis loop of oriented
powder samples [9,10] and single crystals [11]. The oc-
currence of these steps, at more-or-less regularly spaced
values of magnetic field, has been cited as evidence that the
magnetization reversal is due to QTM [2]. Unlike super-
paramagnetic particles, where QTM was first observed [2],
Mn12-Ac contains a large number of identical spin clusters,
allowing much more accurate comparisons with theory to
be made.

Until now, no single crystal EPR studies of Mn12-Ac
have been possible. In this investigation, we utilize
a somewhat novel approach—a multifrequency, high-
sensitivity EPR technique that enables us to make mea-
surements on submillimeter sized single crystals. This
is made possible by the use of resonant cavities with
resonance frequencies varying from 35 to 115 GHz. This
frequency range allows us to probe the energy levels im-
mediately below the top of the anisotropy barrier which,
as recent ac susceptibility measurements have indicated,
may be crucial to the magnetization relaxation mechanism
[12]. Furthermore, EPR transitions between these levels
occur in the 0–5 T range (see below), precisely the region
where the magnetization steps are seen.

The high sensitivity of our method is a result of high
cavity Q factors ranging from5 3 103 to 2 3 104, rep-
resenting an improvement in sensitivity by at least 3 or-
ders of magnitude relative to conventional high-field EPR
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techniques [3–5]. This sensitivity enhancement is crucial
to the successful measurement of single crystals, since the
submillimeter sizes of the best available samples make it
impossible for resonances to be detected by single-pass
EPR techniques. Finally, our technique does not require
narrow-band magnetic field modulation for detecting the
resonances. This is a definite advantage in our case, where
the resonance lines are broad (a few hundred mT).

The Mn12-Ac crystals were synthesized following the
original procedure described by Lis [1], and grew in the
form of rectangular parallelepipeds with thec axis as
the longest dimension (direction of easy magnetization);
the sample dimensions wereø1 3 0.3 3 0.3 mm3. The
sample authenticity was confirmed by dc magnetization
measurements which exhibited the expected magnetiza-
tion steps below 3 K [13,14].

Slightly oversized cylindrical copper cavities were used
in transmission, providing several modes in the desired fre-
quency range [15]; predominantly TE01p sp  1, 2, . . .d
modes were excited. A single Mn12-Ac crystal was placed
close to the bottom of the cavity, halfway between its axis
and its perimeter, thereby ensuring that the sample was op-
timally coupled to the radial ac magnetic fieldssB1d for a
given TE01p mode. The applied dc magnetic fieldsB0d
was directed parallel to the cavity axis, so thatB1 was per-
pendicular toB0 for all of the measurements. The sample
was then loaded in three configurations, corresponding to
the dc magnetic fieldsB0d being applied parallel to each
of the sample’sa, b, andc axes. The cavity and, therefore,
the sample could accurately and controllably be maintained
at any temperature in the range from 1.25 to 60 K. Both
superconducting and resistive magnets were employed. As
a source and detector, we utilized a Millimeter-Wave Vec-
tor Network Analyzer (MVNA) [15,16].

Figure 1(a) shows the temperature dependence of the
transmission through the cavity for a single frequency,
n  66.135 GHz s,2.2 cm21d, with B0 k c. The sharp
minima correspond to absorption in the sample due to EPR;
complementary data were obtained for the dispersion. A
strong feature is observed at,2.5 T (labeledX), which
broadens on cooling. From the frequency dependence of
X, we have established that it has negligible zero-field
offset and, therefore, cannot be reconciled with the energy
diagram in Fig. 1(b) (see below). Furthermore, the tem-
perature dependence ofX is very different from the other
features in Fig. 1(a). Consequently, we conclude thatX is
due to isolated impurities in the sample (possibly Mn21);
no resonant features are observed in the empty cavity.

The complexity of the EPR spectra in Fig. 1(a) increases
as the temperature is raised, i.e., new resonances develop
on the low-field side ofX. This temperature dependence is
consistent with the thermal population of levels close to the
top of the barrier. Figure 1(b) shows the results of a recent
calculation of these levels which was motivated primarily
by magnetization measurements [13]. In order to main-
tain consistency between this calculation, and available ex-
perimental data (our own [13], as well as other published

FIG. 1. (a) Temperature dependence of the normalized trans-
mission (offset) for B0 k c; the frequency is 66.135 GHz.
(b) A calculation of the corresponding energy levels for the
S  10 spin system [13]; the arrows indicate transitions re-
sponsible for the resonances in (a). See text for details of the
calculation and for an explanation of the labels.

results [9–11]), higher order terms in the spin Hamilton-
ian were considered, e.g.,D4k 3 S4

z 1 D4' 3 sS4
x 1 S4

y d
[17]. Such fourth order terms have been discussed pre-
viously in connection with QTM [5,6], and are respon-
sible for the observed anticrossings between levels with
DMS  64 [see Fig. 1(b)]. A more detailed justification
for considering such higher order terms may be found in
Ref. [13]. Nevertheless, we wish to emphasize that the pa-
rameters used in obtaining the level diagram in Fig. 1(b)
were additionally constrained by the EPR data presented
here (see below).

We are now in a position to assign the transitions de-
picted in Fig. 1(b) to the resonances observed in Fig. 1(a).
It can be seen that, for each pair of zero-field levelss6MSd,
two series of resonances are observed, one corresponding
to transitions between levels aligned with the fields1MSd
and the other to transitions between levels which are an-
tialigned s2MSd. Several of the resonances in Fig. 1(a)
have been labeledP s1MSd or N s2MSd to distinguish
between these cases. Additional resonances are observed
for this, and other frequencies, which we labelA. The
numbering after the lettersP, N, or A denotes the value of
MS for the level from which the transition was excited. It
is found that theA resonances are observed only over nar-
row intervals in magnetic field in the general vicinity of the
anticrossings seen in Fig. 1(b) (0.9 T, 1.8 T, etc.). It is,
therefore, tempting to attribute theA resonances to these
anticrossings, thereby providing direct evidence support-
ing the level diagram in Fig. 1(b). However, we cannot
rule out other possibilities.

It is to be noted that the relative intensities of the
resonances in Fig. 1(a) are qualitatively consistent with
a thermal population of these high-lying (lowMS) levels,
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i.e., theP3 andN4 transitions are strongest because they
are excited from the lowest-lying levels.

The frequency dependence of the data forB0 k c is
shown in Fig. 2; all of the data points fall on one of several
straight lines. The solid points fall on a line through
the origin and correspond to the impurity resonancesXd.
The remaining points lie on straight lines with finite zero-
field offsets. For each offset, two series of resonances are
observed, corresponding to theP (positive slope) andN
(negative slope) transitions. It should be noted that the
fields where theP andN data cross (0.45 T, 0.9 T, 1.35 T,
etc.) coincide with the fields where magnetization steps
are observed below 3 K [9–11,13].

The zero-field offsets measured here (Fig. 2), and those
obtained previously by Caneschiet al. [4] contain key
information concerning the nature of the spin Hamilton-
ian. As discussed above, attempts to simulate the present
data are vastly improved if a considerable fourth order
term is taken into consideration in the Hamiltonian [13].
This is best illustrated by noting that the zero-field off-
sets in Fig. 2 do not occur in the simple ratio 1:3:5:7:etc.,
as expected in the absence of a fourth order term. The
best correspondence between the data and the calcula-
tion is obtained assumingD1  20.47 cm21 andD4' 
23.5 3 1024 cm21 s D4kd [17]. However, noticeable
deviations are unavoidable for the one or two levels closest
to the top of the barrier. This indicates possible evidence
for a breakdown of the assumption that the Mn12 clusters
may be treated strictly as rigidS  10 objects. The value
obtained forD1 s 20.47 cm21d is slightly larger than
the generally accepted value corresponding to the barrier
height of44.5 cm21 s 102 3 D1d [7]. However, it has
been noted that magnetization relaxation probably occurs
via levels below the top of the barrier [12], thus reducing
its apparent height to some degree.

From straight line fits to the different sets ofP data
in Fig. 2, g values varying between 1.97 (largest offset)
and 2.08 (smallest offset) are obtained. Once again, these
findings clearly identify possible inadequacies of theS 
10 Hamiltonian. Theg value used in our calculation of
Fig. 2(b) is gk  2.05, which is rather larger than the
published value of 1.9 [3,4].

FIG. 2. Frequency dependence of the data forB0 k c.

Although the frequencies used here are smaller than
the largest zero-field splittings (,9 cm21 for the largest
MS), we have clearly been able to obtain a considerable
amount of information concerning the levels close to the
barrier. The nature of the energy level diagram forB0 ' c
allows us to probe the entire structure of the system. This
is visualized in Fig. 3(b), where it can be seen that the
field causes a strong coupling, and eventual anticrossing, of
levels separated at zero field byDMS  61. This results
in a lifting of the degeneracy between the6MS levels and,
because of level mixing, the possibility of a multitude of
transitions between the levels in Fig. 3(b).

Figure 3(a) shows EPR spectra obtained at several
temperatures forB0 ' c; the frequency is 111.119 GHz
s,3.7 cm21d. As pointed out above, a complex EPR
spectrum is observed for this geometry. At high fields
s.4 Td, however, two distinct series of resonances are
discernible—this is seen most clearly for the 20 K data,
where the intensity alternates between the resonances
which are labeleda and b. In contrast to the data in
Fig. 1(a), most of the resonances are observed at fields
above the impurity feature (labeledX). Thus, the data
in Figs. 1(a) and 3(a) confirm the high degree of axial
anisotropy. It is to be noted that many of the features in
Fig. 3(a), observed at fields belowX, occur in the same
field range as the resonances seen forB k c (see Fig. 2).
Thus, it would be impossible to distinguish between these
resonances from measurements on polycrystalline or
powder samples.

The resonances labeleda persist to the lowest frequen-
cies used in this investigation (see Fig. 4 below), while
the remaining resonances are observed only at higher fre-
quencies. From these facts, we are able to assign thea

resonances to transitions between the split doublets (6MS

FIG. 3. (a) EPR spectra obtained at several temperatures, for
B0 ' c (see text for explanation of labels). (b) A calculation
of the corresponding energy levels [13]; the arrows indicate the
transitions responsible for the resonances in (a).
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in zero field), as indicated in Fig. 3(b); these transitions
are allowed only because of the strong level mixing. On
the basis of the positions of thea resonances, and their
frequency dependence, we have been able to simulate the
data for this orientation using the sameD values as above.
However, in this case, the published value ofg'  1.9
(Caneschiet al. [4]) is in good agreement with our data,
implying an anisotropicg value. Independent measure-
ments withB0 k a, andB0 k b, rule out any orthorhombic
distortions of the crystal symmetry down to 5 K.

The origin of the resonances labeledb is not as straight-
forward. At intermediate fieldss,1 10 Td, such that
the Zeeman energy is comparable to the zero-field level
spacings fgmBB , s2MS 1d 3 0.47  s0.5 9 cm21dg,
the levels are strongly mixed, as noted above. Therefore,
transitions are allowed between the levels in adjacent
doublets, i.e., levels having6MS and6sMS 6 1d in zero
field. However, a threshold energy exists for such tran-
sitions, corresponding to the minimum energy separation
(at the point of closest approach) of the levels in question.
This accounts for the disappearance of theb resonances
at lower frequencies, and the rich EPR spectra observed
at higher frequencies, e.g., as seen in Fig. 3(a).

Finally, Fig. 4 shows magnifications of intermediate
frequency data obtained for each orientation, i.e.,B0 ' c
(main part of Fig. 4), andB0 k c (inset). The first point
to note is the disappearance of most of theb resonances
for B0 ' c at this lower frequency of 57.4 GHz [see
also Fig. 3(a)]. However, more significant is the increase
in intensity, with decreasing temperature, of the features
labeledg. In fact, the temperature dependence ofg, in
the main part of Fig. 4, is qualitatively similar to the tem-
perature dependence ofa10, the fundamental resonance
excited from the ground state, i.e., these are the only
resonances which diminish in intensity as the temperature
is raised. This suggests that, like thea10 transition, a
finite population of spins exists at low temperatures from
which theg transitions are excited. This is particularly
significant for the B0 k c data, since only transitions

FIG. 4. Magnifications of intermediate frequency EPR data
obtained for each orientation; forB0 ' c (main part of
figure), the frequency is 57.4 GHz; and forB0 k c (inset), the
frequency is 55.16 GHz. The temperatures are indicated in the
figures. Also, see text for explanation of labeling.

between levels close to the top of the barrier are accessible
with these frequencies, thus suggesting that there may
be a metastable (or dynamic equilibrium) population of
spins close to the barrier, even atT  0 K. It is not
clear whether theg transitions can be explained within the
framework of anS  10 spin system; however, they are
definitely due to the sample.

In conclusion, we have used a high-sensitivity EPR tech-
nique to make an extremely detailed investigation of the
energy level diagram of Mn12-Ac close to the top of the
magnetization reversal barrier. The ability to study single
crystals is a distinct advantage in that it allows us to ob-
serve multiple resonances, and their temperature depen-
dence, with the magnetic field applied at any orientation
with respect to the sample; we argue that this study would
not have been possible using powder or polycrystalline
samples. At first sight, our data appear to agree well with
the behavior expected of anS  10 spin system. Fur-
thermore, we see possible evidence supporting recent cal-
culations in which higher(fourth)-order terms in the spin
Hamiltonian are included [13]. However, agreement is not
quite as good for EPR transitions close to the top of the
anisotropy barrier, suggesting possible inadequacies of the
S  10 Hamiltonian. From temperature dependent studies
(down to 1.2 K), we find compelling evidence suggesting
that a small population of spins may exist close to the top
of the anisotropy barrier, even at low temperatures.

This work was supported under NSF-DMR 95-10427
and by the National High Magnetic Field Laboratory.

*Electronic address: hill@physics.montana.edu
[1] T. Lis, Acta Crystallogr. Sect.36, 2042 (1980).
[2] For a review, seeQuantum Tunneling of Magnetization—

QTM’94, edited by L. Gunther and B. Barbara, NATO
ASI Ser. E, Vol. 301 (Kluwer, Dordrecht, 1995).

[3] R. Sessoliet al., J. Am. Chem. Soc.115, 1804 (1993).
[4] A. Caneschiet al., J. Am. Chem. Soc.113, 5873 (1991).
[5] A. L. Barra et al., Phys. Rev. B56, 8192 (1997).
[6] P. Politi et al., Phys. Rev. Lett.75, 537 (1995).
[7] M. A. Novak et al., J. Magn. Magn. Mater.146, 211

(1995).
[8] R. Sessoliet al., Nature (London)365, 141 (1993).
[9] J. R. Friedmanet al., Phys. Rev. Lett.76, 3830 (1996).

[10] J. M. Hernandezet al., Phys. Rev. B55, 5858 (1997).
[11] L. Thomaset al., Nature (London)383, 145 (1996).
[12] F. Luis et al., Phys. Rev. B55, 11 448 (1997).
[13] J. A. A. J. Perenboomet al., (to be published).
[14] These steps were also observed in the microwave experi-

ment [S. Hill (unpublished)].
[15] S. Hill et al., in Millimeter and Submillimeter Waves III,

edited by Mohammed N. Afsar (The International Society
for Optical Engineering, Bellingham, 1996), p. 296.

[16] Manufactured by ABmm, 52 Rue Lhomond, 75005 Paris,
France.

[17] This unconventional notation is used to maintain consis-
tency with Ref. [13]. TheD4k and D4' parameters may
be related to the more widely usedB0

4 and B4
4 parameters

as follows:B4
4  1

4
D4'; B0

4  1
20

h 3
7
D4' 1

4
7
D4kj.

2456


