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In the presence of hydrogen peroxide (H20:), xanthine oxidase has been found to catalyze sulfur trioxide anion radical (SO;-) formation from sullite 
anion (SO]-), The SO]" radical was identified by ESR (electron spin resonance) spin trapping, utilizing 5,5-dimethyl-l-pyrroline-l-oxide (DMPO) 
as the spin trap, Inactivated xanthin~ oxidase does not catalyze SO;- radical formation, implying a specific role for this enzyme. The initial rate 
ofSO]- radical formation increases linearly with xanth ine oxidasc concentration, To~ethcr, thes¢ observations indicate that the $07  generation occurs 
enzymatic.ally. These results suggest a new property of xanthine oxidase and perhaps also a significant step in the m~hanism of sulfitc toxicity 

in cellular systems. 
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1. INTRODUCTION 

During our recent studies of the generation of the 
sulfur trioxide anion radical (SOl-) from sulfite anion 
(SO~-), we observed a new property of xanthine oxidase: 
in the presence of hydrogen peroxide (H,.O.,), this en- 
zyme efficiently catalyzes the generation of SOl- radical 
from SO~-. The purpose of this communication is to 
document the evidence leading to this conclusion. The 
significance of this undertaking is as follows. First, xan- 
thine oxidase, with xanthine as a substrate, is commonly 
utilized as a source of Oi radical in examining the role 
of oxygenated radicals in biochemical reactions [1]. Our 
current finding that the xanthine oxidase/H.,O, system 
can generate SO~- radical from SOl- suggests a new prop- 
erty of this enzyme. Second, this result points to a new 
enzymatic pathway for salfite metabolism and toxicity, 
since the SO;- radical has been implicated in the mecha- 
nism of toxic reactions resulting from sulfite exposure 
[2-9]. Third, we noted that while the mechanism of SO;- 
generation from SOl- via autoxidation and trace-metal 
catalyzed oxidation has been studied in detail [10-14], 
relatively little is known about the mechanism of SO;- 
generation through enzymatic pathway, with the excep- 
tion of some recent studies [15-19]. In particular, 
Mason and coworkers [17-19] utilized ESR and ESR 
spin trap methodology to identify SO;- formation during 
the prostaglandin/hydroperoxidase-catalyzed oxidation 
of SOl- [17,18], and SO;-/SO]- radical formation during 
SOl- oxidation by peroxidase/H,.O~ [19]. 

Correspondence address: N.S. Dalai, Dapartment of Chemistry, West 
Virginia University, Morgantown, WV 26506, USA. 

2. MATERIALS AND METHODS 
The spin trap 5,5-dimethyl-l-pyrroline.l-oxide (DMPO) was pur- 

chased from Aldrich. and was purified by charcoal decolorization [20]. 
Xanthin¢ oxidase (from bovine milk), DETAPAC (diethylenetriamin- 
¢pcnta acetic acid), and ~anthin¢ were purchased from Sigma. Cata- 
lase (from bovine liver) was purchased from Bochringer Mannhcim. 
Hydrogen peroxide (H209, phosphate buffer (pH 7.2), and sodium 
sulfite (Na,SOj) were purchased from Fishe~'. All NaaSO~ solutions 
were freshly made in a phosphate buffer. Inactivation of xanthine 
oxidase was achieved by heating the enzyme in an oven at 90"C for 
20 h. 

All ESR spectra were obtained at the X-band (~9.:5 GHz) frequen- 
cies using a Varian E3 or a Braker Eli. 200D spectrometer, essentially 
as described earlier [21], 

3. RESULTS 

3.1. SO'j- generation from SO~- by xanthine oxid- 
ase/H,O: 

As mentioned in the Introduction, sulfit¢ solutions 
generate SO;- radical due to trace-metal ion catalyzed 
oxidation [10-14]. To prevent this, 2.0 mM DETAPAC 
was added to all of the reaction mixtures, following 
Mottley and Mason [19]. As may be noted from Fig. la, 
a barely detectable ESR signal was obtained when 10 
mM Na,.SO~, 60 mM DMPO and 2 mM DETAPAC 
were mixed in a phosphate buffer (pH 7.2). Addition of 
0. l mM H e ,  to this mixture did not significantly alter 
the signal intensity (Fig. lb). However, a strong ESR 
signal was observed when xanthine oxidase, H20., and 
sea  a- were mixed in the presence of DMPO (Fig. It). The 
observed ESR spectrum was analyzed in terms of nitro- 
gen (aN) and hydrogen (an) hyperfine couplings. The 
analysis yielded or~ = 14.7 G and aH= 16.0 G. These ar~ 
and aH values as well as the folio of aN-to-an (0.92) are 
nearly identical to those reported earlier for the DMPO/ 
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a ~ SO~ =" + DMPO 

b ~ (a) + 1-120= 

L ' ~  SO~" + X.O. + HzOz + DMPO 
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Fig. 2. Effect of xanthine oxidase (7(.0.) concentration on SO i- gener- 
ation. The reaction mixture containing in a pH 7.2 phosphate buffer, 
60 mM DMPO, 2 mM DETAPAC, tO mM Na=SO~,0.1 mM H=O, and 

various X.O. concentrations. 

e ~ (c) - s o ~  =" 

f ~ f i ~ ~ ' ~ ( e )  + Cata~ase 

similar to that obtained in the absence of xanthine oxi- 
dase (Fig. lb), suggesting an enzymatic mechanism for 
the SO;- generation process. It is known that an essential 
feature of an enzyme-catalyzed reaction is that the ini- 
tial rate of product formation is linearly proportional 
to the enzyme concentration when the substrate concen- 
tration greatly exceeds the enzyme concentration [26]. 
Indeed, the amount of SO;- generated was found to in- 

g ~ As (e) but inactivated X.O. 

30 G 
I I 

~ H  

Fig. 1. ESR spectra recorded 1 rain after mixing: (a) 10 mM Na~SO~, 
60 mM DMPO and 2 mM DETAPAC in a pH 7.2 phosphate buffer; 
(b) same as (a) but with 0.1 mM H_,O,; (e) same as (b) but with 1 
unit/ml xanthine oxidase (X.O.); (d) same as (e) but without H:O:', (e) 
same as (c) but without Na2SO~; (f) same as (e) but with catalase; (8) 
same as (a) but with inactivated xanthine oxidase (X.O.). The spec- 
trometer settings were: receiver gain, 1.25 x 10~; modulation ampli- 

tude, 1.0 G; scan time, 4 rain; time constant, 0.3 s. 

a .-.---.-. SO.~ z" + X. + X.O. + DMPO 

b ~ Ca)- X. 

c ~ L , , - , . ~  (a) -X.O. 

SO;- adduct formed in other systems [11,13,17,19,22- 
25], demonstrating the formation of the SO;- radical in 
the reaction mixture. Omission of any one component 
caused a dramatic decrease in SO~" generation (Fig. lb, 
d and e). Also, addition of catalase caused a sharp 
decrease in the SO;- generation (Fig. 1 f). Thus the activ- 
ity of xanthine oxidase for SO;- generation from SOl- 
appears to be driven by H20.,. Additional evidence for 
the role of H20.~ will be presented in section 3.3. 

3.2. Evidence for S~-  generation being enzymatic 
Utilization of inactivated xanthine oxidase generated 

a very weak DMPO/SO;- signal (Fig. l g), essentially 

d ~ (a) + Catalase 

3O G 

• --*,-- H 

Fig. 3. ESR spectra recorded 1 rain after mixing: (a) 10 ram Na:SO~, 
60 mM DMPO, 0,1 mM H=O=, 1 unit/ml xanthine oxidase (X.O.) and 
2 rnM DETAPAC in a pH 7.2 phosphate buffer; (b) same as (a) but 
without xanthine (X.); (c) same as (a) but without xanthine oxidase 
(X,O.); (d) same as (a) bat with catalas=. The sp~trometer settings 

were the same as those in the legend to Fig. 1. 
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crease fairly linearly with the xanthine oxidase concen- 
tration (Fig. 2), support ing the conjecture that  the SO~- 
radical generation results from an enzyme mediated re- 
action. 

3.3. Additional evidettce for H.,02 participation 
The xanthine oxidase/xanthine system was utilized to 

evaluate the role of H,O: in SOl- generation from SOl- 
by xanthine oxidase. It is known that the xanthine oxi- 
dase/xanthine system produces both H,O., and O.; [27- 
30]. As shown ia Fig. 3a, a reaction mixture of  xanthine, 
xanthine oxidase, SO]', and DMPO generates a strong 
spin adduct  signal. Its similarity in the spectral line- 
shape and hyperfine splittings to those in Fig. lc implies 
that  the spin adducts are DMPO/SO;-.  Omission of ei- 
ther xanthine or xanthine oxidase resulted in a substan- 
tial reduction in the spectral intensity (Fig. 3b and c), 
indicating the necessity of both xanthine and xanthine 
oxidase for the SO]- formation.  Addition of catalase 
caused significant decrease in the signal intensity (Fig. 
3d). It can thus be deduced that  xanthine oxidase and 
H20: (produced by xanthine oxidase/xanthine system) 
generate the SOl- radical. 

4. DISCUSSION 

The above spin trapping measurements demonstrate 
that, in the presence of H:O.,, xanthine oxidase can 
catalyze SO;- formation from $O]- enzymatically. This 
result has at least two significant implications: (i) it 
suggests a new property for xanthine oxidase; and (ii) 
it provides a possible new metabolic pathway for SO;- 
generation in cellular systems, where both H,O, and 
xanthine oxidase are present. As mentioned in the Intro- 
duction,  it is generally believed that SO;- radicals play 
an important  role in the biochemical mechanism of  SO~- 
toxicity [2-9]. For  example, SO;" radicals are known to 
cause many adverse reactions with biological molecules, 
including methionine and diphosphopyridine nucleo- 
tide oxidation [8,31], fl-carotene and t ryptophan de- 
struction [7,8], double bond addition in alkenes [32], 
fatty acid peroxidation [33], nucleic acid modification 
[3], and D N A  cleavage [34]. Since the SOl- generation 
from SO]- autoxidation is not thought to occur signifi- 
cantly in vivo, the generation of  SO]- by enzyme-medi- 
ated reactions may be important  [15,16]. It has also 
been suggested [35] that  SOl- generation via enzymatic 
pathway may be responsible for some of the injuries 
which result to humans deficient in sulfite oxidase. Thus 
SOl- generation by xanthine oxidase/H.+O2 may play an 
impor tant  role in the mechanism of SOl-  related toxic- 
ity. 

~,~,~ile additional investigations are needed to under- 
stand the  mechanism of SOl- generation by xanthine 
oxidase/H+O~, the dependence of  the reaction on H.,O2 
suggests that  H:O2 binds to xanthine oxidase to gener- 

ate a xanthine oxidase-H:O: complex, which in turn 
reacts with SOl- to produce SO]- radicals. This mecha- 
nism for the generation of SO]" radicals by xanthine 
oxidase/H:O, is essentially analogous to that proposed 
earlier for the horsei'adish peroxidase/HzO: system [35]. 

In summary, this communicat ion reports on the ob- 
servation of a new property of  xanthine oxidase - that  
in the presence of  H20:,  it can catalyze the generation 
of  SO]- radical f rom SOl-. Even though we have not yet 
elucidated the underlying biochemical mechanism, this 
result itself should be of  significance in studies dealing 
with the metabolism and toxicity of  sulfite, because xan- 
thine oxidase is sometimes used as an enzyme for gener- 
ating Oi in studies of  sulfite reactivity [36]. Further 
studies aimed at understanding the chemical nature o f  
the active site for this reaction should improve our un- 
derstanding of the mechanism of  SO;- generation by this 
enzyme. 
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