395 research outputs found

    MYB59 transcription factor behaves differently in metallicolous and non-metallicolous populations of Arabidopsis halleri

    Get PDF
    In Arabidopsis thaliana (L.) Heynh.,MYB59 transcription factor participates in regulating Ca homeostasis and signal transduction and is induced by Cd excess. To investigate its role in the facultative metallophyte Arabidopsis halleri ssp. halleri (L.) O’Kane and Al-Shehbaz, MYB59 expression was investigated under Cd treatment or Ca depletion in three populations belonging to distinct phylogeographic units (metallicolous PL22 and I16 and nonmetallicolous I29), and compared with the expression in A. thaliana. In control conditions, MYB59 transcription in A. thaliana and the non-metallicolous population I29 follow a comparable trend with higher expression in roots than shoots, whereas in metallicolous populations I16 and PL22 its expression is similar in roots and shoots, suggesting a convergent evolution associated with adaptation to metalliferous environments. After 6 h of Ca depletion, MYB59 transcript levels were very high in I16 and PL22 populations, indicating that the adaptation to metalliferous environments requires tightly regulated Ca homeostasis and signalling. Cd treatment caused variability in MYB59 expression. In I29, MYB59 expression, as in A. thaliana, is likely associated to stress response, whereas its modulation in the two metallicolous populations reflects the different strategies for Cd tolerance and accumulation. In conclusion, MYB59 regulation in A. halleri is part of the network linking mineral nutrition and Cd tolerance/accumulation

    Editorial: Environmental phytoremediation: plants and microorganisms at work

    Get PDF
    Human industry, farming, and waste disposal practices have resulted in the large-scale contamination of soil and water with organic compounds and heavy metals, with detrimental effects on ecosystems and human health. Conventional soil remediation methods are expensiveand often involve the storage of soil in designated areas, postponing rather than solving the problem. In the last decade, the pressing need to find alternative methods has highlighted the scientific and economic benefits of plants and their associated microorganisms, which can beused for the reclamation of polluted soil and water (Meagher, 2000). This is an elegant and low-cost approach for the decontamination of polluted sites and has been greeted with a high degree of public acceptance, therefore prompting research into the use of phytoremediation technology to address the large areas of land and water currently affected (reviewed by Kr\ue4mer,2005; Vangronsveld et al., 2009; Lee, 2013). This Frontiers in Plant Science research topic provides a snapshot of current research into the application of environmental phytoremediation strategies

    Metal detoxification in land plants: from bryophytes to vascular plants: STATE of the art and opportunities

    Get PDF
    5openInternationalItalian coauthor/editorPotentially toxic elements are a widespread concern due to their increasing diffusion into the environment. To counteract this problem, the relationship between plants and metal(loid)s has been investigated in the last 30 years. In this field, research has mainly dealt with angiosperms, whereas plant clades that are lower in the evolutive scale have been somewhat overlooked. However, recent studies have revealed the potential of bryophytes, pteridophytes and gymnosperms in environmental sciences, either as suitable indicators of habitat health and elemental pollution or as efficient tools for the reclamation of degraded soils and waters. In this review, we summarize recent research on the interaction between plants and potentially toxic elements, considering all land plant clades. The focus is on plant applicability in the identification and restoration of polluted environments, as well as on the characterization of molecular mechanisms with a potential outlet in the engineering of element tolerance and accumulation.openFasani, Elisa; Li, Mingai; Varotto, Claudio; Furini, Antonella; DalCorso, GiovanniFasani, E.; Li, M.; Varotto, C.; Furini, A.; Dalcorso, G

    Metal Interactions in the Ni Hyperaccumulating Population of Noccaea caerulescens Monte Prinzera

    Get PDF
    Hyperaccumulation is a fascinating trait displayed by a few plant species able to accumulate large amounts of metal ions in above-ground tissues without symptoms of toxicity. Noccaea caerulescens is a recognized model system to study metal hyperaccumulation and hypertolerance. A N. caerulescens population naturally growing on a serpentine soil in the Italian Apennine Mountains, Monte Prinzera, was chosen for the study here reported. Plants were grown hydroponically and treated with different metals, in excess or limiting concentrations. Accumulated metals were quantified in shoots and roots by means of ICP-MS. By real-time PCR analysis, the expression of metal transporters and Fe deficiency-regulated genes was compared in the shoots and roots of treated plants. N. caerulescens Monte Prinzera confirmed its ability to hypertolerate and hyperaccumulate Ni but not Zn. Moreover, excess Ni does not induce Fe deficiency as in Ni-sensitive species and instead competes with Fe translocation rather than its uptake

    Genetic approaches to exploit landraces for improvement of Triticum turgidum ssp. durum in the age of climate change

    Get PDF
    Addressing the challenges of climate change and durum wheat production is becoming an important driver for food and nutrition security in the Mediterranean area, where are located the major producing countries (Italy, Spain, France, Greece, Morocco, Algeria, Tunisia, Turkey, and Syria). One of the emergent strategies, to cope with durum wheat adaptation, is the exploration and exploitation of the existing genetic variability in landrace populations. In this context, this review aims to highlight the important role of durum wheat landraces as a useful genetic resource to improve the sustainability of Mediterranean agroecosystems, with a focus on adaptation to environmental stresses. We described the most recent molecular techniques and statistical approaches suitable for the identification of beneficial genes/alleles related to the most important traits in landraces and the development of molecular markers for marker-assisted selection. Finally, we outline the state of the art about landraces genetic diversity and signature of selection, already identified from these accessions, for adaptability to the environment

    Endomembrane reorganization induced by heavy metals

    Get PDF
    Plant cells maintain plasmatic concentrations of essential heavy metal ions, such as iron, zinc, and copper, within the optimal functional range. To do so, several molecular mechanisms have to be committed to maintain concentrations of non-essential heavy metals and metalloids, such as cadmium, mercury and arsenic below their toxicity threshold levels. Compartmentalization is central to heavy metals homeostasis and secretory compartments, finely interconnected by traffic mechanisms, are determinant. Endomembrane reorganization can have unexpected effects on heavy metals tolerance altering in a complex way membrane permeability, storage, and detoxification ability beyond gene\u2019s expression regulation. The full understanding of endomembrane role is propaedeutic to the comprehension of translocation and hyper-accumulation mechanisms and their applicative employment. It is evident that further studies on dynamic localization of these and many more proteins may significantly contribute to the understanding of heavy metals tolerance mechanisms. The aim of this review is to provide an overview about the endomembrane alterations involved in heavy metals compartmentalization and tolerance in plants

    Enhancement of Zn tolerance and accumulation in plants mediated by the expression of Saccharomyces cerevisiae vacuolar transporter ZRC1

    Get PDF
    Main conclusion Transgenic Arabidopsis thaliana and Populus alba plants overexpressing the zinc transporter ScZRC1 in shoots exhibit Zn tolerance. Increased Zn concentrations were observed in shoots of P. alba, a species suitable for phytoremediation. Genetic engineering of plants for phytoremediation is worth to consider if genes leading to heavy metal accumulation and tolerance are expressed in high biomass producing plants. The Saccharomyces cerevisiae ZRC1 gene encodes a zinc transporter which is primarily involved in the uptake of Zn into the vacuole. The ZRC1 gene was expressed in the model species A. thaliana and P. alba (cv. Villafranca). Both species were transformed with constructs carrying ScZRC1 under the control of either the CaMV35S promoter for constitutive expression or the active promoter region of the tobacco Rubisco small subunit (pRbcS) to limit the expression to the above-ground tissues. In hydroponic cultures, A. thaliana and poplar ScZRC1-expressing plants accumulated more Zn in vegetative tissues and were more tolerant than untransformed plants. No differences were found between plants carrying the CaMV35::ScZRC1 or pRbcS::ScZRC1 constructs. The higher Zn accumulation in transgenic plants was accompanied by an increased superoxide dismutase (SOD) activity, indicating the activation of defense mechanisms to prevent cellular damage. In the presence of cadmium in addition to Zn, plants did not show symptoms of metal toxicity, neither in hydroponic cultures nor in soil. Zn accumulation increased in shoots, while no differences were observed for Cd accumulation, in comparison to control plants. These data suggest that ectopic expression of ScZRC1 can increase the potential of poplar for the remediation of Zn-polluted soils, although further tests are required to assay its application in remediating multimetal polluted soils

    DNA methylation is enhanced during Cd hyperaccumulation in Noccaea caerulescens ecotype Ganges

    Get PDF
    In this study, we assess the DNA damage occurring in response to cadmium (Cd) in the Cd hyperaccumulator Noccaea caerulescens Ganges (GA) vs the non-accumulator and close-relative species Arabidopsis thaliana. At this purpose, the alkaline comet assay was utilized to evaluate the Cd-induced variations in nucleoids and the methy-sens comet assay, and semiquantitative real-time (qRT)-PCR were also performed to associate nucleus variations to possible DNA modifications. Cadmium induced high DNA damages in nuclei of A. thaliana while only a small increase in DNA migration was observed in N. caerulescens GA. In addition, in N. caerulescens GA, CpG DNA methylation increase upon Cd when compared to control condition, along with an increase in the expression of MET1 gene, coding for the DNA-methyltransferase. N. caerulescens GA does not show any oxidative stress under Cd treatment, while A. thaliana Cd-treated plants showed an upregulation of transcripts of the respiratory burst oxidase, accumulation of reactive oxygen species, and enhanced superoxide dismutase activity. These data suggest that epigenetic modifications occur in the N. caerulescens GA exposed to Cd to preserve genome integrity, contributing to Cd tolerance

    Interaction between selected bacterial strains and Arabidopsis halleri modulates shoot proteome and cadmium and zinc accumulation

    Get PDF
    The effects of plant-microbe interactions between the hyperaccumulator Arabidopsis halleri and eight bacterial strains, isolated from the rhizosphere of A. halleri plants grown in a cadmium-and zinc-contaminated site, were analysed for shoot metal accumulation, shoot proteome, and the transcription of genes involved in plant metal homeostasis and hyperaccumulation. Cadmium and zinc concentrations were lower in the shoots of plants cultivated in the presence of these metals plus the selected bacterial strains compared with plants grown solely with these metals or, as previously reported, with plants grown with these metals plus the autochthonous rhizosphere-derived microorganisms. The shoot proteome of plants cultivated in the presence of these selected bacterial strains plus metals, showed an increased abundance of photosynthesis-and abiotic stress-related proteins (e.g. subunits of the photosynthetic complexes, Rubisco, superoxide dismutase, and malate dehydrogenase) counteracted by a decreased amount of plant defence-related proteins (e.g. endochitinases, vegetative storage proteins, and \u3b2-glucosidase). The transcription of several homeostasis genes was modulated by the microbial communities and by Cd and Zn content in the shoot. Altogether these results highlight the importance of plant-microbe interactions in plant protein expression and metal accumulation and emphasize the possibility of exploiting microbial consortia for increasing or decreasing shoot metal content

    A INFLUÊNCIA DO SLACKLINE NO EQUILÍBRIO DE PRÉ-ESCOLARES

    Get PDF
    A partir de testes avaliativos do perfil motor dos alunos, o profissional da Saúde tem como atuar visando aprimorar o trabalho com eles, suprindo qualquer carência motora. O equilíbrio é a base primordial de toda a ação diferenciada dos segmentos corporais. A partir de vivências com o slackline nas aulas de Educação Física, pretende-se avaliar a influência desse equipamento no equilíbrio dos alunos do 2º ano do Ensino Fundamental da EEB Professora Luiza Santin do Município de Chapecó, SC. Antes e após dois meses de intervenção com o slackline, os alunos serão avaliados com a Escala de Desenvolvimento Motor (NETO) para avaliar o equilíbrio, que conta com 23 alunos do período matutino, abrangendo 10 meninas e 13 meninos, com faixa etária entre sete e oito anos de idade. Para participar da amostragem, os pais dos alunos precisarão consentir assinando o Termo de Consentimento Livre e Esclarecido, no qual serão informados dos objetivos da realização deste estudo. No momento da coleta de dados, o pesquisador deverá anotar os pontos obtidos de cada tarefa em uma ficha apropriada, e ao final dos testes, serão feitas a análise e a tabulação dos dados. Após o desenvolvimento da proposta de intervenção, será realizado o pós-teste, repetindo-se a bateria de testes como igualmente realizada no pré-teste, a fim de identificar as contribuições das aulas para o desenvolvimento do equilíbrio dos alunos. Os alunos que já passaram pela experiência conseguem se sentir motivados e mostram melhorar seu equilíbrio a cada nova aula.Palavras-chave: Slackline. Equilíbrio. Educação Física.
    corecore