15 research outputs found

    Constraints on Modified Gravity from Sunyaev-Zeldovich Cluster Surveys

    Get PDF
    We investigate the constraining power of current and future Sunyaev-Zeldovich cluster surveys on the f(R) gravity model. We use a Fisher matrix approach, adopt self-calibration for the mass- observable scaling relation, and evaluate constraints for the SPT, Planck, SPTPol and ACTPol surveys. The modified gravity effects on the mass function, halo bias, matter power spectrum, and mass-observable relation are taken into account. We show that, relying on number counts only, the Planck cluster catalog is expected to reduce current upper limits by about a factor of four, to {\sigma}fR0 = 3 {\times} 10-5 (68% confidence level). Adding the cluster power spectrum further improves the constraints to {\sigma}fR0 = 10-5 for SPT and Planck, and {\sigma}fR0 = 3 {\times} 10-6 for SPTPol, pushing cluster constraints significantly beyond the limit where number counts have no constraining power due to the chameleon screening mechanism. Further, the combination of both observables breaks degeneracies, especially with the expansion history (effective dark energy density and equation of state). The constraints are only mildly worsened by the use of self-calibration but depend strongly on the mass threshold of the cluster samples.Comment: 16 pages, 9 figure

    High Resolution X-Ray Imaging of the Center of IC342

    Get PDF
    We presented the result of a high resolution (FWHM~0.5'') 12 ks Chandra HRC-I observation of the starburst galaxy IC342 taken on 2 April 2006. We identified 23 X-ray sources within the central 30' x 30' region of IC342. Our HRC-I observation resolved the historical Ultraluminous X-ray sources (ULX), X3, near the nucleus into 2 sources, namely C12 and C13, for the first time. The brighter source C12, with L(0.08-10keV)=(6.66\pm0.45)\times10^{38}ergs^-1, was spatially extended (~82 pc x 127 pc). From the astrometric registration of the X-ray image, C12 was at R.A.=03h:46m:48.43s, decl.=+68d05m47.45s, and was closer to the nucleus than C13. Thus we concluded that source was not an ULX and must instead be associated with the nucleus. The fainter source C13, with L(0.08-10keV)=(5.1\pm1.4) x 10^{37}ergs^-1 was consistent with a point source and located $6.51'' at P.A. 240 degree of C12. We also analyzed astrometrically corrected optical Hubble Space Telescope and radio Very Large Array images, a comparison with the X-ray image showed similarities in their morphologies. Regions of star formation within the central region of IC342 were clearly visible in HST H alpha image and this was the region where 3 optical star clusters and correspondingly our detected X-ray source C12 were observed. We found that a predicted X-ray emission from starburst was very close to the observed X-ray luminosity of C12, suggesting that nuclear X-ray emission in IC342 was dominated by starburst. Furthermore, we discussed the possibility of AGN in the nucleus of IC342. Although our data was not enough to give a firm existence of an AGN, it could not be discarded.Comment: 29 page, 8 figures, accepted by Ap

    Long-term X-ray Variability Study of IC342 from XMM-Newton Observations

    Get PDF
    We presented the results of an analysis of four XMM-Newton observations of the starburst galaxy IC342 taken over a four-year span from 2001 to 2005, with an emphasis on investigating the long-term flux and spectral variability of the X-ray point sources. We detected a total of 61 X-ray sources within 35' Γ—\times 30' of the galaxy down to a luminosity of (1-2)Γ—\times1037 erg s-1 depending on the local background. We found that 39 of the 61 detected sources showed long-term variability, in which 26 of them were classified as X-ray transients. We also found 19 sources exhibiting variations in hardness ratios or undergoing spectral transitions among observations, and were identified as spectral variables. In particular, 8 of the identified X-ray transients showed spectral variability in addition to flux variability. The diverse patterns of variability observed is indicative of a population of X-ray binaries. We used X-ray colors, flux and spectral variability, and in some cases the optical or radio counterparts to classify the detected X-ray sources into several stellar populations. We identified a total of 11 foreground stars, 1 supersoft sources (SSS), 3 quasisoft sources (QSS), and 2 supernova remnants (SNR). The identified SSS/QSS are located near or on the spiral arms, associate with young stellar populations; the 2 SNR are very close to the starburst nucleus where current star formation activities are dominated. We also discovered a spectral change in the nuclear source of IC342 for the first time by a series of X-ray spectrum analysis.Comment: 45 pages, 6 figures accepted by Ap

    Hyperactive Neuroendocrine Secretion Causes Size, Feeding, and Metabolic Defects of C. elegans Bardet-Biedl Syndrome Mutants

    Get PDF
    Bardet-Biedl syndrome, BBS, is a rare autosomal recessive disorder with clinical presentations including polydactyly, retinopathy, hyperphagia, obesity, short stature, cognitive impairment, and developmental delays. Disruptions of BBS proteins in a variety of organisms impair cilia formation and function and the multi-organ defects of BBS have been attributed to deficiencies in various cilia-associated signaling pathways. In C. elegans, bbs genes are expressed exclusively in the sixty ciliated sensory neurons of these animals and bbs mutants exhibit sensory defects as well as body size, feeding, and metabolic abnormalities. Here we show that in contrast to many other cilia-defective mutants, C. elegans bbs mutants exhibit increased release of dense-core vesicles and organism-wide phenotypes associated with enhanced activities of insulin, neuropeptide, and biogenic amine signaling pathways. We show that the altered body size, feeding, and metabolic abnormalities of bbs mutants can be corrected to wild-type levels by abrogating the enhanced secretion of dense-core vesicles without concomitant correction of ciliary defects. These findings expand the role of BBS proteins to the regulation of dense-core-vesicle exocytosis and suggest that some features of Bardet-Biedl Syndrome may be caused by excessive neuroendocrine secretion

    Sensory Perception of Food and Insulin-Like Signals Influence Seizure Susceptibility

    Get PDF
    Food deprivation is known to affect physiology and behavior. Changes that occur could be the result of the organism's monitoring of internal and external nutrient availability. In C. elegans, male mating is dependent on food availability; food-deprived males mate with lower efficiency compared to their well-fed counterparts, suggesting that the mating circuit is repressed in low-food environments. This behavioral response could be mediated by sensory neurons exposed to the environment or by internal metabolic cues. We demonstrated that food-deprivation negatively regulates sex-muscle excitability through the activity of chemosensory neurons and insulin-like signaling. Specifically, we found that the repressive effects of food deprivation on the mating circuit can be partially blocked by placing males on inedible food, E. coli that can be sensed but not eaten. We determined that the olfactory AWC neurons actively suppress sex-muscle excitability in response to food deprivation. In addition, we demonstrated that loss of insulin-like receptor (DAF-2) signaling in the sex muscles blocks the ability of food deprivation to suppress the mating circuit. During low-food conditions, we propose that increased activity by specific olfactory neurons (AWCs) leads to the release of neuroendocrine signals, including insulin-like ligands. Insulin-like receptor signaling in the sex muscles then reduces cell excitability via activation of downstream molecules, including PLC-Ξ³ and CaMKII
    corecore