20 research outputs found

    Synthesis and chiral recognition ability of helical polyacetylenes bearing helicene pendants

    No full text
    International audienceNovel polyacetylenes bearing an optically active or racemic [6]helicene unit as the pendant groups directly bonded to the main-chain (poly-1s) were prepared by the polymerization of the corresponding acetylenes (1-rac, 1-P, and 1-M) with a rhodium catalyst. The optically active polyacetylenes (poly-1-P and poly-1-M) formed a preferred-handed helical conformation biased by the optically active helicene pendants, resulting in the induced circular dichroism (ICD) in their π-conjugated polymer backbone regions. The optically active helical polymers, when employed as an enantioselective adsorbent, showed a high chiral recognition ability towards racemates, such as the monomeric [6]helicene and 1,1’-binaphthyl analogues, and enantioselectively adsorbed one of the enantiomers

    Spatiotemporal Control of Ice Crystallization in Supercooled Water via an Ultrashort Laser Impulse

    Full text link
    Takahashi H., Kono T., Sawada K., et al. Spatiotemporal Control of Ice Crystallization in Supercooled Water via an Ultrashort Laser Impulse. Journal of Physical Chemistry Letters, 14(19), 4394-4402, 18 May 2023: © 2023 American Chemical Society. DOI: 10.1021/acs.jpclett.3c00414.Focused irradiation with ultrashort laser pulses realized the fine spatiotemporal control of ice crystallization in supercooled water. An effective multiphoton excitation at the laser focus generated shockwaves and bubbles, which acted as an impulse for inducing ice crystal nucleation. The impulse that was localized close to the laser focus and accompanied by a small temperature elevation allowed the precise position control of ice crystallization and its observation with spatiotemporal resolution of micrometers and microseconds using a microscope. To verify the versatility of this laser method, we also applied it using various aqueous systems (e.g., plant extracts). The systematic study of crystallization probability revealed that laser-induced cavitation bubbles play a crucial role in inducing ice crystal nucleation. This method can be used as a tool for studying ice crystallization dynamics in various natural and biological phenomena

    Intra-Aortic Clusters Undergo Endothelial to Hematopoietic Phenotypic Transition during Early Embryogenesis

    Get PDF
    Intra-aortic clusters (IACs) attach to floor of large arteries and are considered to have recently acquired hematopoietic stem cell (HSC)-potential in vertebrate early mid-gestation embryos. The formation and function of IACs is poorly understood. To address this issue, IACs were characterized by immunohistochemistry and flow cytometry in mouse embryos. Immunohistochemical analysis revealed that IACs simultaneously express the surface antigens CD31, CD34 and c-Kit. As embryos developed from 9.5 to 10.5 dpc, IACs up-regulate the hematopoietic markers CD41 and CD45 while down-regulating the endothelial surface antigen VE-cadherin/CD144, suggesting that IACs lose endothelial phenotype after 9.5 dpc. Analysis of the hematopoietic potential of IACs revealed a significant change in macrophage CFC activity from 9.5 to 10.5 dpc. To further characterize IACs, we isolated IACs based on CD45 expression. Correspondingly, the expression of hematopoietic transcription factors in the CD45(neg) fraction of IACs was significantly up-regulated. These results suggest that the transition from endothelial to hematopoietic phenotype of IACs occurs after 9.5 dpc
    corecore