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RIMS Kôkyûroku Bessatsu
B37 (2013), 113–136

Phase space Feynman path integrals via piecewise

bicharacteristic paths and their semiclassical

approximations

By

Naoto Kumano-go∗ and Daisuke Fujiwara∗∗

Abstract

This paper is a rough survey of our paper [23]. Since the RIMS Kôkyûroku Bessatsu gives

us a chance to introduce the ideas which are meaningful but are not suited for publication in

ordinary journal, we introduce some ideas and some calculations of [23] using some figures.

§ 1. Introduction to phase space Feynman path integral

Let U(T, 0) be the fundamental solution for the Schrödinger equation

(1.1) (i∂T − 1

ℏ
H(T, x,

ℏ
i
∂x))U(T, 0) = 0 , U(0, 0) = I ,

where T > 0, x ∈ Rd and ℏ is the Planck parameter with 0 < ℏ < 1. The Hamiltonian

H(T, x, ℏ
i ∂x) can be written as a pseudo-differential operator:

H(T, x,
ℏ
i
∂x)v(x) =

(
1

2π

)d ∫
Rd

eix·ξ0H(T, x, ℏξ0)v̂(ξ0)dξ0(1.2)

=

(
1

2πℏ

)d ∫
R2d

e
i
ℏ (x−x0)·ξ0H(T, x, ξ0)v(x0)dx0dξ0 .

One may ask whether we can use the Fourier integral operator

(1.3) I(T, 0)v(x) =

(
1

2πℏ

)d ∫
R2d

e
i
ℏ (x−x0)·ξ0− i

ℏ
∫ T
0

H(t,x,ξ0)dtv(x0)dx0dξ0
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as an approximation of U(T, 0)v(x). In fact, we have the following:

Let ∆T,0 : T = TJ+1 > TJ > · · · > T1 > T0 = 0 be a division of the interval [0, T ].

Set tj = Tj − Tj−1 for j = 1, 2, . . . , J, J + 1 and |∆T,0| = max1≤j≤J+1 tj . Then, under

a suitable condition (cf. [21]), we have

U(T, 0)v(x) = lim
|∆T,0|→0

I(T, TJ)I(TJ , TJ−1) · · · I(T2, T1)I(T1, 0)v(x)(1.4)

= lim
|∆T,0|→0

(
1

2πℏ

)d(J+1) ∫
R2d(J+1)

e
i
ℏ
∑J+1

j=1 (xj−xj−1)·ξj−1−
∫ Tj
Tj−1

H(t,xj ,ξj−1)dt

×v(x0)
J∏

j=0

dxjdξj

with x = xJ+1. In other words, if we consider the function U(T, 0, x, ξ0) satisfying

U(T, 0)v(x) =

(
1

2πℏ

)d ∫
R2d

e
i
ℏ (x−x0)·ξ0U(T, 0, x, ξ0)v(x0)dx0dξ0 ,

then we can write

e
i
ℏ (x−x0)·ξ0U(T, 0, x, ξ0)(1.5)

= lim
|∆T,0|→0

(
1

2πℏ

)dJ ∫
R2dJ

e
i
ℏ
∑J+1

j=1 (xj−xj−1)·ξj−1−
∫ Tj
Tj−1

H(t,xj ,ξj−1)dt
J∏

j=1

dxjdξj .

Now we introduce the position path q(t) and the momentum path p(t) with q(Tj) = xj

for j = 0, 1, . . . , J + 1 and p(Tj) = ξj for j = 0, 1, . . . , J . Using the phase space path

integral introduced by R. P. Feynman [9, Appendix B], we formally write

(1.6) e
i
ℏ (x−x0)·ξ0U(T, 0, x, ξ0) =

∫
e

i
ℏϕ[q,p]D[q, p] .

Here (q, p) : [0, T ] → Rd ×Rd are the paths with q(0) = x0, q(T ) = x and p(0) = ξ0 in

the phase space, ϕ[q, p] is the action of Hamiltonian type defined by

(1.7) ϕ[q, p] =

∫
[0,T )

p(t) · dq(t)−
∫
[0,T )

H(t, q(t), p(t))dt ,

and the phase space path integral

∫
∼ D[q, p] is a sum over all the paths (q, p) (see

Fig. 1). The expression (1.5) of the phase space path integral (1.6) is called the time

slicing approximation. However, in the sense of mathematics, the measure D[q, p] which

weighs all the paths (q, p) equally, does not exist (cf. I. M. Gel’fand-N. Y. Vilenkin [14,

Theorem 4, p. 359]). Furthermore, in the sense of quantum physics, we can not have

the position q(t) and the momentum p(t) at the same time t.
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0 T

(0, x0)

(T, x)

Continuous ?

The position path q(t) ?
0 T

(0, ξ0) Jump ?

The momentum path p(t) ?

Figure 1.

In [23], when the time interval [0, T ] is small, using piecewise bicharacteristic paths,

we proved the existence of the phase space Feynman path integrals

(1.8)

∫
e

i
ℏϕ[q,p]F [q, p]D[q, p]

with general functional F [q, p] as integrand. More precisely, we gave a fairly general class

F of functionals F [q, p] such that for any F [q, p] ∈ F , the time slicing approximation

converges uniformly on compact subsets with respect to (x, ξ0, x0) ∈ Rd ×Rd ×Rd.

Remark. The size of the time interval [0, T ] depends only on the dimension d and

the constant κ2 of Assumption 1. As an appendix, in §9.1, we will give an example which

converges uniformly on compact subsets with respect to (x, ξ0, x0) when T is small. This

example implies that Theorems 5 and 4 are not valid when T is large. In §9.2, we will

show the convergence in the sense of operator when T is large and F [q, p] ≡ 1.

Remark. For the phase space path integral (1.6) via Fourier integral operators,

see H. Kumano-go-H. Kitada [19], N. Kumano-go [21] and W. Ichinose [16]. We regard

(1.6) as the particular case of (1.8) with F [q, p] ≡ 1. Using the piecewise linear paths q(t)

and the piecewise constant paths p(t), W. Ichinose [16] gave some functionals F [q, p] =∏K
k=1 Bk(q(τk), p(τk)), 0 < τ1 < · · · < τk < T of cylinder type which do not converge as

an operator. Note that we will exclude F [q, p] = B(t, q(t), p(t)) at the time t from our

class F .

Remark. As we will see in §4, piecewise bicharacteristic paths naturally lead us

to the semiclassical approximation of Hamiltonian type. Our use of jumps at t = Tj

was inspired by C. Garrod [12], L. S. Schulman [26, Chapter 31] and J. C. Zambrini [5,

Part 2].

Remark. The phase space path integrals via Fourier integral operators are also

used in other equations (cf. J. Le Rousseau [17], N. Kumano-go [22]).
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Since Feynman [9], the phase space path integral has been rediscovered many times

(cf. W. Tobocman [27], H. Davies [7], C. Garrod [12]) and various formulations have

also been developed. C. DeWitt-Morette-A. Maheshwari-B. Nelson [8] (cf. [4, Chapter

3]) and M. M. Mizrahi [24] introduced the formulation without limiting procedure. K.

Gawedzki [13] used the techniques analogous to those used by Ito in the configuration

path integral. I. Daubechies-J. R. Klauder [6] presented the phase space path integral

via analytic continuation from Wiener measure. S. Albeverio-G. Guatteri-S. Mazzucchi

[2] (cf. [1, Chapter 10]) realized the phase space path integral as an infinite dimensional

oscillatory integral. O. G. Smolyanov-A. G. Tokarev-A. Truman [28] formulated the

phase space path integral via Chernoff formula. G. W. Johnson-M. Lapidus [18] and T.

L. Gill–W. W. Zachary[15] developed Feynman’s operational calculus of the main part

of [9].

§ 2. Existence of phase space path integrals

In this section, we explain our result about the existence of the phase space path

integrals (1.8) step by step.

§ 2.1. Assumption of the Hamilton function

Our assumption of the Hamilton function H(t, x, ξ) of (1.1) are the following.

Assumption 1. H(t, x, ξ) is a real-valued function of (t, x, ξ) ∈ R ×Rd ×Rd,

and for any multi-indices α, β, ∂α
x ∂

β
ξ H(t, x, ξ) is continuous. For any non-negative

integer k, there exists a positive constant κk such that

(2.1) |∂α
x ∂

β
ξ H(t, x, ξ)| ≤ κk(1 + |x|+ |ξ|)max(2−|α+β|,0)

for any multi-indices α, β with |α+ β| = k.

The typical examples of the Hamiltonian H(t, x, ℏ
i ∂x) of (1.1) are the following.

Example 1.

H(t, x,
ℏ
i
∂x) =

d∑
j,k=1

(aj,k(t)
ℏ
i
∂xj

ℏ
i
∂xk

+ bj,k(t)xj
ℏ
i
∂xk

+ cj,k(t)xjxk)

+

d∑
j=1

(aj(t)
ℏ
i
∂xj + bj(t)xj) + c(t, x) .

Here aj,k(t), bj,k(t), cj,k(t), aj(t), bj(t) and ∂α
x c(t, x) are real-valued continuous bounded

functions.
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§ 2.2. We can produce many F [q, p] ∈ F

Typical examples of the functionals F [q, p] in our class F are the following.

Example 2.

(1) Let m ≥ 0. Let B(t, x) be a function of (t, x) ∈ R×Rd such that for any multi-index

α, ∂α
xB(t, x) is continuous and satisfies |∂α

xB(t, x)| ≤ Cα(1 + |x|)m with a positive

constant Cα. Then, the value at time t, 0 ≤ t ≤ T ,

F [q, p] = B(t, q(t)) ∈ F .

In particular, if F [q, p] ≡ 1, then F [q, p] ∈ F .

(2) Let m ≥ 0 and 0 ≤ T ′ ≤ T ′′ ≤ T . Let B(t, x, ξ) be a function of (t, x, ξ) ∈
R×Rd×Rd such that for any multi-indices α, β, ∂α

x ∂
β
ξ B(t, x, ξ) is continuous and

satisfies |∂α
x ∂

β
ξ B(t, x, ξ)| ≤ Cα,β(1+ |x|+ |ξ|)m with a positive constant Cα,β. Then

F [q, p] =

∫
[T ′,T ′′)

B(t, q(t), p(t))dt ∈ F .

Furthermore, if m = 0, then

F [q, p] = e
∫
[T ′,T ′′) B(t,q(t),p(t))dt ∈ F .

We will define the class F in Definition 1 of §8. Because, even if we do not state the

definition of F here, we can produce many functionals F [q, p] ∈ F , applying Theorem

1 to Example 2.

Theorem 1 (Algebra). If F [q, p] ∈ F and G[q, p] ∈ F ,

then F [q, p] +G[q, p] ∈ F and F [q, p]G[q, p] ∈ F .

§ 2.3. Time slicing approximation

Our approach via piecewise bicharacteristic paths is a little different from known

approaches. Therefore, in order to explain piecewise bicharacteristic paths, we begin

with the time slicing approximation again.

Let ∆T,0 = (TJ+1, TJ , . . . , T1, T0) be any division of the interval [0, T ], i.e.,

(2.2) ∆T,0 : T = TJ+1 > TJ > · · · > T1 > T0 = 0 .

Let tj = Tj − Tj−1 and |∆T,0| = max1≤j≤J+1 tj . Set xJ+1 = x. Let xj ∈ Rd and

ξj ∈ Rd for j = 1, 2, . . . , J (see Fig. 2).
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0 T1 T2 TJ T

(0, x0)
(T1, x1)

(T2, x2) (TJ , xJ) (T, x)

The time slicing on (t, q)-space
0 T1 T2 TJ T

(0, ξ0)

(T1, ξ1)

(T2, ξ2) (TJ , ξJ)

The time slicing on (t, p)-space

Figure 2.

§ 2.4. Bicharacteristic paths

Let κ2d(Tj − Tj−1) < 1/2. Then we can define the bicharacteristic paths

q̄Tj ,Tj−1 = q̄Tj ,Tj−1(t, xj , ξj−1) and p̄Tj ,Tj−1 = p̄Tj ,Tj−1(t, xj , ξj−1), Tj−1 ≤ t ≤ Tj by the

Hamilton canonical equation

∂tq̄Tj ,Tj−1(t) = (∂ξH)(t, q̄Tj ,Tj−1 , p̄Tj ,Tj−1),

∂tp̄Tj ,Tj−1(t) = −(∂xH)(t, q̄Tj ,Tj−1 , p̄Tj ,Tj−1), Tj−1 ≤ t ≤ Tj ,(2.3)

q̄Tj ,Tj−1(Tj) = xj , p̄Tj ,Tj−1(Tj−1) = ξj−1 .

Note that q̄Tj ,Tj−1(Tj−1) and p̄Tj ,Tj−1(Tj) are independent of xj−1 and ξj (see Fig. 3).

0 Tj−1Tj T

(0, x0)
(Tj−1, xj−1)

(Tj , xj)

(T, x)

The bicharacteristic path q̄Tj ,Tj−1

0 Tj−1Tj T

(0, ξ0)
(Tj−1, ξj−1)

(Tj , ξj)

The bicharacteristic path p̄Tj ,Tj−1

Figure 3.

§ 2.5. Piecewise bicharacteristic paths

Using the bicharacteristic paths q̄Tj ,Tj−1 and p̄Tj ,Tj−1 of (2.3), we define the piece-

wise bicharacteristic paths q∆T,0
= q∆T,0

(t, xJ+1, ξJ , xJ , . . . , ξ1, x1, ξ0, x0) and
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p∆T,0
= p∆T,0

(t, xJ+1, ξJ , xJ , . . . , ξ1, x1, ξ0) by

q∆T,0(t) = q̄Tj ,Tj−1(t, xj , ξj−1), Tj−1 < t ≤ Tj , q∆T,0(0) = x0,(2.4)

p∆T,0
(t) = p̄Tj ,Tj−1(t, xj , ξj−1), Tj−1 ≤ t < Tj

for j = 1, 2, . . . , J, J + 1 (see Fig. 4).

0 T

(0, x0)

(T, x)

The piecewise bicharacteristic path q∆T,0

0 T

(0, ξ0)

The piecewise bicharacteristic path p∆T,0

Figure 4.

Then the functionals ϕ[q∆T,0
, p∆T,0

], F [q∆T,0
, p∆T,0

] become functions, i.e.,

ϕ[q∆T,0 , p∆T,0 ] = ϕ∆T,0(xJ+1, ξJ , xJ , . . . , ξ1, x1, ξ0, x0) ,(2.5)

F [q∆T,0
, p∆T,0

] = F∆T,0
(xJ+1, ξJ , xJ , . . . , ξ1, x1, ξ0, x0) .(2.6)

§ 2.6. Phase space Feynman path integrals exist

Our result about the existence of phase space Feynman path integrals is the fol-

lowing.

Theorem 2. Let T be sufficiently small. Then, for any F [q, p] ∈ F ,∫
e

i
ℏϕ[q,p]F [q, p]D[q, p](2.7)

≡ lim
|∆T,0|→0

(
1

2πℏ

)dJ ∫
R2dJ

e
i
ℏϕ[q∆T,0

,p∆T,0
]F [q∆T,0 , p∆T,0 ]

J∏
j=1

dxjdξj

converges uniformly on compact sets of R3d with respect to (x, ξ0, x0), i.e., (2.7) is

well-defined.

Remark. There are two hurdles if we try to treat (2.7) mathematically. The first

hurdle is that even when F [q, p] ≡ 1, each integral of the right-hand side of (2.7) does

not converge absolutely, i.e., ∫
R2d

1dxjdξj = ∞ .
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In order to get over the first hurdle, we treat integrals of this type as oscillatory integrals.

The second hurdle is that if |∆T,0| → ∞, the number J of integrals of the right-hand

side of (2.7) tends to ∞, i.e.,

∞×∞×∞×∞× · · · · · · · · · .

In order to get over the second hurdle, we treat the multiple integral of (2.7) directly

to keep the functionals ϕ[q∆T,0
, p∆T,0

], F [q∆T,0
, p∆T,0

] in the multiple integral.

Remark. In the case F [q, p] ≡ 1, one can regard the right-hand side of (1.4)

as composition of many operators in L2(Rd). It is possible to discuss whether the

composed operator converges or not as |∆| → 0 . This approach is very powerful.

However it treats the integrals one by one as an operator and its convergence does not

seem to distinguish between the position x0 and the momentum ξ0. On the other hand,

(2.7) converges with respect to q(T ) = x and p(0) = ξ0. When F [q, p] ≡ 1, note that

U(T, 0, x, ξ0) of (1.6) is independent of x0.

We will explain the outline of the proof of Theorems 1 and 2 in the later sections

§5-§8. In the next two sections §3 and §4, we explain some applications.

§ 3. A Fubini-type theorem

As a merit to treat the phase space path integral (1.8) with general functional

F [q, p] as integrand, we state the perturbation expansion formula.

Theorem 3. Let T be sufficiently small. Let m ≥ 0 and 0 ≤ T ′ ≤ T ′′ ≤ T .

Assume that for any multi-index α, ∂α
xB(t, x) is continuous on [T ′, T ′′]×Rd and there

exists a positive constant Cα such that |∂α
xB(t, x)| ≤ Cα(1 + |x|)m. Then, for any

functional F [q, p] ∈ F including F [q, p] ≡ 1, we have

∫
e

i
ℏϕ[q,p]

(∫
[T ′,T ′′)

B(t, q(t))dt

)
F [q, p]D[q, p](3.1)

=

∫
[T ′,T ′′)

(∫
e

i
ℏϕ[q,p]B(t, q(t))F [q, p]D[q, p]

)
dt .

Remark. In (3.1), we do not treat B(t, q(t), p(t)) at the time t because of the

uncertain principle.
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Remark (Perturbation expansion formula). If |∂α
xB(t, x)| ≤ Cα, we have∫

e
i
ℏϕ[q,p]+ i

ℏ
∫
[0,T )

B(τ,q(τ))dτD[q, p]

=
∞∑

n=0

(
i

ℏ

)n ∫
[0,T )

dτn

∫
[0,τn)

dτn−1 · · ·
∫
[0,τ2)

dτ1

×
∫

e
i
ℏϕ[q,p]B(τn, q(τn))B(τn−1, q(τn−1)) · · ·B(τ1, q(τ1))D[q, p] .

§ 4. Semiclassical approximation of Hamiltonian type

As a merit of the use of piecewise bicharacteristic paths, we state the semiclassical

approximation of Hamiltonian type.

Let 4κ2dT < 1/2. Then, for any (xJ+1, ξ0) ∈ Rd ×Rd, there exists the stationary

point (x∗
J , ξ

∗
J , . . . , x

∗
1, ξ

∗
1) of the phase function ϕ∆T,0 = ϕ[q∆T,0 , p∆T,0 ], i.e.,

(4.1) (∂(ξJ ,xJ ,...,ξ1,x1)ϕ∆T,0
)(xJ+1, ξ

∗
J , x

∗
J , . . . , ξ

∗
1 , x

∗
1, ξ0) = 0 .

Pushing the stationary point (x∗
J , ξ

∗
J , . . . , x

∗
1, ξ

∗
1) into the Hessian matrix of ϕ∆T,0

, we

define D∆T,0
(xJ+1, ξ0) by

(4.2) D∆T,0
(xJ+1, ξ0) = (−1)dJ det(∂2

(ξJ ,xJ ,...,ξ1,x1)
ϕ∆T,0

)(xJ+1, x
∗
J , ξ

∗
J , . . . , x

∗
1, ξ

∗
1 , ξ0) .

Lemma 4.1. For any multi-indices α, β, there exists a positive constant Cα,β

such that

|∂α
x ∂

β
ξ0
(D∆T,0(x, ξ0)− 1)| ≤ Cα,βT

2 ,

|∂α
x ∂

β
ξ0
(D∆T,0

(x, ξ0)−D(T, x, ξ0))| ≤ Cα,β |∆T,0|T

with a limit function D(T, x, ξ0) = lim
|∆T,0|→0

D∆T,0(x, ξ0).

We use this limit function D(T, x, ξ0) as a Hamiltonian version of the Morette-Van

Vleck determinant [25]

Theorem 4 (Semiclassical approximation of Hamiltonian type as ℏ → 0).

Let T be sufficiently small. Then, for any F [q, p] ∈ F , we have∫
e

i
ℏϕ[q,p]F [q, p]D[q, p]

= e
i
ℏϕ[qT,0,pT,0]

(
D(T, x, ξ0)

−1/2F [qT,0, pT,0] + ℏΥ (T, ℏ, x, ξ0, x0)
)
.

Here qT,0 = qT,0(t, x, ξ0, x0) and pT,0 = pT,0(t, x, ξ0) are the piecewise bicharacteristic

paths for the simplest division 0 < T (see Fig. 5). Furthermore, for any multi-indices

α, β, there exists a positive constant Cα,β independent of 0 < ℏ < 1 such that

|∂α
x ∂

β
ξ0
Υ(T, ℏ, x, ξ0, x0)| ≤ Cα,β(1 + |x|+ |ξ0|+ |x0|)m .
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Remark. Using the notations (2.5) and (2.6), we can also write

(4.3) ϕT,0(x, ξ0, x0) = ϕ[qT,0, pT,0] , FT,0(x, ξ0, x0) = F [qT,0, pT,0] .

0 T

(0, x0)

(T, x)

The path qT,0 for the division 0 < T
0 T

(0, ξ0)

The path pT,0 for the division 0 < T

Figure 5.

§ 5. Process of the proof of Theorems 1, 2 and 4

In this survey, we explain the process of the proof of [23]. For the proof, see [23].

In order to prove the convergence of the multiple integral

(5.1)

(
1

2πℏ

)dJ ∫
R2dJ

e
i
ℏϕ[q∆T,0

,p∆T,0
]F [q∆T,0

, p∆T,0
]

J∏
j=1

dxjdξj

as |∆T,0| → 0, we have only to add many assumptions for F∆T,0
= F [q∆T,0

, p∆T,0
].

Because we gave no assumption for F [q, p] ∈ F until this section. The assumptions

should be closed under addition and multiplication. Then F will be an algebra. Not to

consider other things is better. Then F will become larger as a set. If lucky, F may

contain at least one example F [q, p] ≡ 1 as the fundamental solution for the Schrödinger

equation.

Our proof consists of 3 steps. In §6, we explain Lemma 6.1 as an estimate of H.

Kumano-go-Taniguchi’s type. Using Lemma 6.1, we can control the multiple integral

(5.1) by CJ as J → ∞ with a positive constant C. In §7, we explain Lemma 7.1 as

an stationary phase method of Fujiwara’s type. Using Lemma 7.1, we can control the

multiple integral (5.1) by C independent of J → ∞ with a positive constant C. In §8,
we explain that the multiple integral (5.1) converges as |∆T,0| → 0.
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§ 6. Estimate of H. Kumano-go-Taniguchi’s type

We consider q∆T,0
(ℏ, xJ+1, ξ0, x0) defined by the multiple integral(

1

2πℏ

)dJ ∫
R2dJ

e
i
ℏϕ∆T,0F∆T,0

(xJ+1, ξJ , xJ , . . . , ξ1, x1, ξ0, x0)
J∏

j=1

dxjdξj(6.1)

= e
i
ℏϕT,0(x,ξ0,x0)q∆T,0

(ℏ, xJ+1, ξ0, x0)

with ϕT,0(x, ξ0, x0) in (4.3).

Lemma 6.1 (Estimate of H. Kumano-go-Taniguchi’s type).

Let T be sufficiently small. Let m ≥ 0. Assume that for any integer M ≥ 0, there

exist positive constants AM , XM such that for any multi-indices αj, βj−1 with |αj |,
|βj−1| ≤ M , j = 1, 2, . . . , J, J + 1,

|(
J+1∏
j=1

∂αj
xj
∂
βj−1

ξj−1
)F∆T,0(xJ+1, ξJ , xJ , . . . , ξ1, x1, ξ0, x0)|(6.2)

≤ AM (XM )J+1(1 +

J+1∑
j=1

(|xj |+ |ξj−1|) + |x0|)m .

Then there exists a positive constant C such that

(6.3) |q∆T,0
(ℏ, x, ξ0, x0)| ≤ CJ(1 + |xJ+1|+ |ξ0|+ |x0|)m .

The case m = 0 of Lemma 6.1 is called H. Kumano-go-Taniguchi’s theorem (cf.

[20, pp. 359-360]).

§ 6.1. Integrate by parts over and over again

We explain the outline of the proof of Lemma 6.1 when m = 0 (cf. Fujiwara-N.

Kumano-go-Taniguchi [11]).

Using some functions ωTj ,Tj−1(xj , ξj−1), j = 1, 2, . . . , J, J + 1, we can write

(6.4) ϕ∆T,0
=

J+1∑
j=1

(xj − xj−1)ξj−1 +
J+1∑
j=1

ωTj ,Tj−1(xj , ξj−1) .

We introduce the differential operators of the first order

(6.5) Mj =
1− i(∂ξjϕ∆T,0

)∂ξj
1 + ℏ−1|∂ξjϕ∆T,0

|2
, Nj =

1− i(∂xjϕ∆T,0
)∂xj

1 + ℏ−1|∂xjϕ∆T,0
|2

for j = 1, 2, . . . , J . Note that

Mje
i
ℏϕ∆T,0 = e

i
ℏϕ∆T,0 , Nje

i
ℏϕ∆T,0 = e

i
ℏϕ∆T,0 .
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Integrating by parts over and over again, we write (6.1) as(
1

2πℏ

)dJ ∫
R2dJ

e
i
ℏϕ∆T,0F∆T,0

J∏
j=1

dxjdξj(6.6)

=

(
1

2πℏ

)dJ ∫
R2dJ

e
i
ℏϕ∆T,0F♠

∆T,0

J∏
j=1

dxjdξj ,

where F♠
∆T,0

is the multi-product of differential operators given by

(6.7) F♠
∆T,0

= (N∗
J )

d+1 · · · (N∗
2 )

d+1(N∗
1 )

d+1(M∗
J )

d+1 · · · (M∗
2 )

d+1(M∗
1 )

d+1F∆T,0

with the adjoint operators M∗
j , N

∗
j of Mj , Nj .

§ 6.2. Expect different results

Generally speaking, we can not control multi-products of J differential operators

by CJ as J → ∞ with a positive constant C. However, by (6.4),

∂ξjϕ∆T,0 = −(xj − xj+1) + ∂ξjωTj+1,Tj (xj+1, ξj) ,

∂xjϕ∆T,0
= −(ξj − ξj−1) + ∂xjωTj ,Tj−1(xj , ξj−1)

are functions of 3d-variables independent of J . Hence we can write

M∗
j = a1j (xj+1, ξj , xj)∂ξj + a0j (xj+1, ξj , xj) ,

N∗
j = b1j (ξj , xj , ξj−1)∂xj + b0j (ξj , xj , ξj−1)

with some functions a1j , a
0
j , b

1
j and b0j of 3d-variables independent of J . Therefore, in

(6.7), only ∂xj+1 , ∂ξj and ∂xj differentiateM
∗
j , and only ∂ξj differentiatesN

∗
j . Therefore,

in (6.7), only N∗
j+1, M

∗
j and N∗

j differentiate M∗
j and only N∗

j differentiates N∗
j . Hence

we can control the multi-product (6.7) by CJ as J → ∞ with a positive constant

C. Roughly speaking, from (6.5), the operation of M∗
j implies the multiplication of

C/(1 + ℏ−1|∂ξjϕ∆T,0 |2)1/2 with a positive constant C, and the operation of N∗
j implies

the multiplication of C/(1 + ℏ−1|∂xj
ϕ∆T,0

|2)1/2 with a positive constant C.

§ 6.3. Change all variables at one time

Set zj = ∂ξjϕ∆T,0 and ζj = ∂xjϕ∆T,0 for j = 1, 2, . . . , J . From (6.7), we have

|F♠
∆T,0

| ≤ (C ′)J
J∏

j=1

1

(1 + ℏ−1|zj |2)(d+1)/2

1

(1 + ℏ−1|ζj |2)(d+1)/2

with a positive constant C ′. Furthermore, since T is sufficiently small, we can obtain∣∣∣∣det ∂(xJ , . . . , x1, ξJ , . . . , ξ1)

∂(zJ , . . . , z1, ζJ , . . . , ζ1)

∣∣∣∣ ≤ (C ′′)J
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with a positive constant C ′′. Changing all variables at one time, we rewrite (6.6) as(
1

2πℏ

)dJ ∫
R2dJ

e
i
ℏϕ∆T,0F♠

∆T,0

J∏
j=1

dxjdξj(6.8)

=

(
1

2πℏ

)dJ ∫
R2dJ

e
i
ℏϕ∆T,0F♠

∆T,0

∣∣∣∣det ∂(xJ , . . . , x1, ξJ , . . . , ξ1)

∂(zJ , . . . , z1, ζJ , . . . , ζ1)

∣∣∣∣ J∏
j=1

dzjdζj .

Integrating (6.8) with respect to (zJ , . . . , z1, ζJ , . . . , ζ1), we can control (6.1) by CJ as

J → ∞ with a positive constant C. □

§ 7. Stationary phase method of Fujiwara’s type

We consider the remainder term Υ∆T,0
(ℏ, x, ξ0, x0) of the multiple integral(

1

2πℏ

)dJ ∫
R2dJ

e
i
ℏϕ∆T,0F∆T,0(xJ+1, ξJ , xJ , . . . , ξ1, x1, ξ0, x0)

J∏
j=1

dxjdξj(7.1)

= e
i
ℏϕT,0(x,ξ0,x0)

(
D∆T,0(x, ξ0)

−1/2FT,0(x, ξ0, x0) + ℏΥ∆T,0(ℏ, x, ξ0, x0)
)

with ϕT,0(x, ξ0, x0), FT,0(x, ξ0, x0) in (4.3) and D∆T,0
(x, ξ0) in (4.2).

Lemma 7.1 (Stationary phase method of Fujiwara’s type).

Let T be sufficiently small. Let m ≥ 0. Assume that for any integer M ≥ 0, there exist

positive constants AM , XM such that for any ∆T,0 and any multi-indices αj, βj−1 with

|αj |, |βj−1| ≤ M , j = 1, 2, . . . , J, J + 1,

|(
J+1∏
j=1

∂αj
xj
∂
βj−1

ξj−1
)F∆T,0

(xJ+1, ξJ , xJ , . . . , ξ1, x1, ξ0, x0)|(7.2)

≤ AM (XM )J+1(
J+1∏
j=1

(tj)
min(|βj−1|,1))(1 +

J+1∑
j=1

(|xj |+ |ξj−1|) + |x0|)m .

Then there exists a positive constant C independent of ∆T,0 such that

(7.3) |Υ∆T,0
(ℏ, x, ξ0, x0)| ≤ CT (1 + |xJ+1|+ |ξ0|+ |x0|)m .

Remark. The remainder term of multiple integrals for configuration space path

integrals was estimated by D. Fujiwara [10]. Though the present paper treats multiple

integrals for phase space path integrals, the proof of Lemma 7.1 follows the rule of [10].

Remark. In order to control the remainder term Υ∆T,0(ℏ, x, ξ0, x0), we added

the small term tj for the differentiation ∂ξj−1 . Since q∆T,0(t) ≈ xj − tjξj−1 when

Tj−1 < t ≤ Tj , the functional F [q, p] = q(t) satisfies (7.2). However we give up treating

the functional F [q, p] = p(t).
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§ 7.1. Distinguish the main term from the remainder term

We explain the outline of the proof of Lemma 7.1 when m = 0.

We must integrate (7.1) with respect to (ξ1, x1), (ξ2, x2), . . . , (ξJ , xJ ). First we

integrate (7.1) with respect to (ξ1, x1). By the stationary phase method, we distinguish

the main term (M1F∆T,0
) from the remainder term (R1F∆T,0

).(
1

2πℏ

)d ∫
R2d

e
i
ℏϕ∆T,0F∆T,0

(. . . , x2, ξ1, x1, ξ0, x0)dx1dξ1(7.4)

= e
i
ℏϕ(∆T,T2

,0)(M1F∆T,0
)(. . . , ξ2, x2, ξ0, x0)

+e
i
ℏϕ(∆T,T2

,0)(R1F∆T,0)(. . . , ξ2, x2, ξ0, x0) .

The main term (M1F∆T,0
) is ‘simple’ as a function of (ξ2, x2) and given by

(M1F∆T,0)(. . . , ξ2, x2, ξ0, x0)(7.5)

= D∆T2,0
(x2, ξ0)

−1/2F∆T,0
(. . . , ξ2, x2, ξ

∗
1 , x

∗
1, ξ0, x0)

= D∆T2,0(x2, ξ0)
−1/2F(∆T,T2 ,0)

(. . . , ξ2, x2, ξ0, x0) .

Here (∆T,T2 , 0) be the division given by

(7.6) (∆T,T2 , 0) : T = TJ+1 > TJ > · · · > T2 > T0 = 0 ,

and the stationary point (ξ∗1 , x
∗
1) defined by (∂(ξ1,x1)ϕ∆T,0

)(x2, ξ
∗
1 , x

∗
1, ξ0) = 0 satisfies

x∗
1 = q̄T2,0(T1), ξ

∗
1 = p̄T2,0(T1) (see Fig. 6). The remainder term (R1F∆T,0

) is ‘com-

plicated’ as a function of (ξ2, x2) but can be controlled by the small term (t2ℏ). For

example, if F [q, p] ≡ 1, we have

(7.7) |(R1F∆T,0
)| ≤ C(t2ℏ) .

§ 7.2. Do only simple integrals

Since (M1F∆T,0
) is ‘simple’ as a function of (ξ2, x2), we integrate it further with

respect to (ξ2, x2). By the stationary phase method, we have(
1

2πℏ

)d ∫
R2d

e
i
ℏϕ(∆T,T2

,0)(M1F∆T,0
)(. . . , x3, ξ2, x2, ξ0, x0)dx2dξ2

= e
i
ℏϕ(∆T,T3

,0)(M2M1F∆T,0)(. . . , ξ3, x3, ξ0, x0)

+e
i
ℏϕ(∆T,T3

,0)(R2M1F∆T,0
)(. . . , ξ3, x3, ξ0, x0) .

Here (∆T,T3 , 0) be the division given by

(7.8) (∆T,T3 , 0) : T = TJ+1 > TJ > · · · > T3 > T0 = 0 .
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0 T1 T2 T

(0, x0)

(T2, x2) (T, x)

The position path of (M1F∆T,0
)

0 T1 T2 T

(0, ξ0)

(T2, ξ2)

The momentum path of (M1F∆T,0
)

Figure 6.

The main term (M2M1F∆T,0
) is ‘simple’ as a function of (ξ3, x3) and given by

(M2M1F∆T,0)(. . . , ξ3, x3, ξ0, x0)(7.9)

= D∆T3,0
(x3, ξ0)

−1/2F(∆T,T3
,0)(. . . , ξ3, x3, ξ0, x0)

(see Fig. 7). The remainder term (R2M1F∆T,0
) is ‘complicated’ as a function of (ξ3, x3)

but can be controlled by the small term (t3ℏ). For example, if F [q, p] ≡ 1, we have

(7.10) |(R2M1F∆T,0
)| ≤ C(t3ℏ) .

0 T2 T3 T

(0, x0) (T3, x3)

(T, x)

The position path of (M2M1F∆T,0
)

0 T2 T3 T

(0, ξ0) (T3, ξ3)

The momentum path of (M2M1F∆T,0
)

Figure 7.

Since the main term (M2M1F∆T,0
) is ‘simple’ as a function of (ξ3, x3), we integrate

it further with respect to (ξ3, x3). Repeating this simple process, we get the main term

of (7.1) (see Fig. 5).

(MJMJ−1 . . .M1F∆T,0) = D∆T,0(x, x0)
−1/2FT,0(x, ξ0, x0) .
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§ 7.3. Skip all complicated integrals

Now, we go back to the remainder term (R1F∆T,0
). Since (R1F∆T,0

) is ‘compli-

cated’ as a function of (ξ2, x2), we skip the integration with respect to (ξ2, x2) and

integrate it with respect to (ξ3, x3) beforehand. By the stationary phase method, we

have (
1

2πℏ

)d ∫
Rd

e
i
ℏϕ(∆T,T2

,0)(R1F∆T,0
)(. . . , x4, ξ3, x3, ξ2, x2, ξ0, x0)dx3dξ3

= e
i
ℏϕ(∆T,T4

,T2,0)(M3R1F∆T,0)(. . . , ξ4, x4, ξ2, x2, ξ0, x0)

+e
i
ℏϕ(∆T,T4

,T2,0)(R3R1F∆T,0
)(. . . , ξ4, x4, ξ2, x2, ξ0, x0) ,

where the main term (M3R1F∆T,0) is ‘simple’ as a function of (ξ4, x4) and the remainder

term (R3R1F∆T,0
) is ‘complicated’ as a function of (ξ4, x4) but can be controlled by

the two small terms (t4ℏ) and (t2ℏ). For example, if F [q, p] ≡ 1, we have

|(R3R1F∆T,0
)| ≤ C(t4ℏ)C(t2ℏ) .

Since the main term (M3R1F∆T,0) is ‘simple’ as a function of (ξ4, x4), we integrate it

further with respect to (ξ4, x4). But since the remainder term (R3R1F∆T,0
) is ‘com-

plicated’ as a function of (ξ4, x4), we skip the integration with respect to (ξ4, x4) and

integrate it with respect to (ξ5, x5) beforehand.

§ 7.4. The rule is the following

The rule of D. Fujiwara [10] is the following: Integrate with respect to (ξj , xj).

By the stationary phase method, we distinguish the main term from the remainder

term. The main term is ‘simple’ as a function of (ξj+1, xj+1). Therefore, we integrate it

further with respect to (ξj+1, xj+1). However, the remainder term is ‘complicated’ as a

function of (ξj+1, xj+1). Therefore, we skip the integration with respect to (ξj+1, xj+1)

and integrate it with respect to (ξj+2, xj+2) beforehand.

§ 7.5. Carry out the rule until the end

Carrying out the rule until the end, we have

q∆T,0
(ℏ, xJ+1, ξ0, x0) = q0(xJ+1, ξ0, x0) +

′∑
qjK ,jK−1,...,j1(xJ+1, ξ0, x0) .

Here q0(xJ+1, ξ0, x0) = D∆T,0
(x, ξ0)

−1/2FT,0(xJ+1, ξ0, x0) is the main term of (7.1), the

sum

′∑
means the summation over all the sequence of integers (jK , jK−1, . . . , j1) such

that

0 = j0 < j1 − 1 < j1 < j2 − 1 < j2 < · · · < jK − 1 < jK ≤ J + 1 ,
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and the summand qjK ,jK−1,...,j1(xJ+1, ξ0, x0) is the complicated integrals which we

skipped

e
i
ℏϕT,0(xJ+1,ξ0,x0)qjK ,jK−1,...,j1(xJ+1, ξ0, x0)

=

∫
RdK

e
i
ℏϕT,TjK

,...,T1,0bjK ,jK−1,...,j1(xJ+1, ξjK , xjK , . . . , ξj1 , xj1 , ξ0, x0)
K∏

k=1

dxjkdξjk ,

where

bjK ,jK−1,...,j1(xJ+1, ξjK , xjK , . . . , ξj1 , xj1 , ξ0, x0)(7.11)

= (QJ · · · Q3Q2Q1F∆T,0)(xJ+1, ξjK , xjK , . . . , ξj1 , xj1 , ξ0, x0)

with

Qj =


Identity if j = jK , jK−1, . . . , j1

Rj if j = jK − 1, jK−1 − 1, . . . , j1 − 1

Mj otherwise

.

Therefore the integrand can be controlled by the many small terms (tjkℏ), i.e.,

|bjK ,jK−1,...,j1(xJ+1, ξjK , xjK , . . . , ξj1 , xj1 , ξ0, x0)| ≤ CK
( K∏

k=1

(tjkℏ)
)
.

§ 7.6. Force all complicated integrals on others

We force on the estimate of H. Kumano-go-Taniguchi’s type all the complicated

integrals which we skipped. By Lemma 6.1, we have

|qjK ,jK−1,...,j1(xJ+1, ξ0, x0)| ≤ (C ′)K
( K∏

k=1

(tjkℏ)
)

with a positive constant C ′. The remainder term is the sum of qjK ,jK−1,...,j1(xJ+1, ξ0, x0).

Υ∆T,0
(ℏ, xJ+1, ξ0, x0) =

1

ℏ

′∑
qjK ,jK−1,...,j1(xJ+1, ξ0, x0) .

Using
∑J+1

j=1 tj = T , we take a sum. Note 0 < ℏ < 1. Then we have

|Υ∆T,0
(ℏ, xJ+1, x0)| ≤

1

ℏ

′∑(
(C ′)K

K∏
k=1

(tjkℏ)
)

≤ 1

ℏ

( J+1∏
j=1

(1 + C ′tjℏ)− 1
)
≤ (C ′′)T

with a positive constant C ′′. □
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§ 8. Definition of the class F

The definition of the class F of functionals F [q, p] is the following:

Definition 1 (The class F). Let F [q, p] be a functional whose domain contains

all the piecewise bicharacteristic paths q∆T,0
, p∆T,0

of (2.4). We say that F [q, p] ∈ F if

F∆T,0 = F [q∆T,0 , p∆T,0 ] satisfies Assumption 2.

Assumption 2. Let m ≥ 0. Let uj ≥ 0, j = 1, 2, . . . , J, J + 1 are non-negative

parameters depending on the division ∆T,0 such that
∑J+1

j=1 uj ≡ U < ∞. For any

integer M ≥ 0, there exist positive constants AM , XM such that for any ∆T,0, any

multi-indices αj, βj−1 with |αj |, |βj−1| ≤ M , j = 1, 2, . . . , J, J + 1 and any 1 ≤ k ≤ J ,

|(
J+1∏
j=1

∂αj
xj
∂
βj−1

ξj−1
)F∆T,0

(xJ+1, ξJ , xJ , . . . , ξ1, x1, ξ0, x0)|(8.1)

≤ AM (XM )J+1(

J+1∏
j=1

(tj)
min(|βj−1|,1))(1 +

J+1∑
j=1

(|xj |+ |ξj−1|) + |x0|)m ,

|(
J+1∏
j=1

∂αj
xj
∂
βj−1

ξj−1
)∂xk

F∆T,0
(xJ+1, ξJ , xJ , . . . , ξ1, x1, ξ0, x0)|(8.2)

≤ AM (XM )J+1uk(
∏
j ̸=k

(tj)
min(|βj−1|,1))(1 +

J+1∑
j=1

(|xj |+ |ξj−1|) + |x0|)m .

Under Assumption 2, we consider the multiple integral again.(
1

2πℏ

)dJ ∫
R2dJ

e
i
ℏϕ∆T,0F∆T,0

(xJ+1, ξJ , xJ , . . . , ξ1, x1, ξ0, x0)
J∏

j=1

dxjdξj(8.3)

= e
i
ℏϕT,0(x,ξ0,x0)q∆T,0

(ℏ, x, ξ0, x0)

= e
i
ℏϕT,0(x,ξ0,x0)

(
D∆T,0(x, ξ0)

−1/2FT,0(x, ξ0, x0) + ℏΥ∆T,0(ℏ, x, ξ0, x0)
)
.

Then the estimate in Lemma 7.1 becomes the following.

Lemma 8.1. Let T be sufficiently small. Under Assumption 2, there exist pos-

itive constants C, C ′ such that

|Υ∆T,0
(ℏ, x, ξ0, x0)| ≤ CT (T + U)(1 + |xJ+1|+ |ξ0|+ |x0|)m ,(8.4)

|q∆T,0
(ℏ, x, ξ0, x0)| ≤ C ′(1 + |xJ+1|+ |ξ0|+ |x0|)m .(8.5)

§ 8.1. Consider integrals with paths

Using paths, we interpret Lemma 8.1. The multiple integral (8.3) implies Fig. 4.

Hence, (8.5) implies that Fig. 4 can be controlled by C ′. The main term FT,0(x, ξ0, x0)
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of (8.3) implies Fig. 5. Therefore, (8.4) implies that the difference between Fig. 4 and

Fig. 5 can be controlled by CT (T + U).

§ 8.2. Compare two multiple integrals by two paths

We have only to show that the sequence of multiple integrals (2.7) is a Cauchy

sequence with respect to the division ∆T,0. For the two divisions

∆T,0 : T = TJ+1 > TJ > · · · · · · · · · > T1 > T0 = 0 ,

(∆T,TN+1 ,∆Tn−1,0) : T = TJ+1 > · · · > TN+1 > Tn−1 > · · · > T0 = 0 ,

we compare the multiple integral∫
· · · · · ·

∫
· · · · · ·

∫
· · · · · ·

∫
∼

J∏
j=1

dxjdξj(8.6)

= e
i
ℏϕT,0(x,ξ0,x0)q∆T,0

(ℏ, x, ξ0, x0)

and the multiple integral∫
· · · · · ·

∫ ∫
· · · · · ·

∫
∼

J∏
j=N+1

dxjdξj

J∏
j=n−1

dxjdξj(8.7)

= e
i
ℏϕT,0(x,ξ0,x0)q(∆T,TN+1

,∆Tn−1,0)(ℏ, x, ξ0, x0) .

Note that the multiple integral (8.6) implies Fig. 4 and that the multiple integral (8.7)

implies Fig. 8. By (8.5), we can control the multiple integral on the interval [0, Tn−1]

0 Tn−1 TN+1 T

(0, x0)

(Tn−1, xn−1)

(TN+1, xN+1)

(T, x)

0 Tn−1 TN+1 T

(0, ξ0)

(Tn−1, ξn−1)

(TN+1, ξN+1)

Figure 8.

and the multiple integral on the interval [TN+1, T ] by C ′. Furthermore, by (8.4), we

can control the difference of the two multiple integrals on the interval [Tn−1, TN+1] by

C(TN+1 − Tn−1)(TN+1 − Tn−1 + UN+1 − Un−1) ,



132 Naoto Kumano-go and Daisuke Fujiwara

where UN+1 =
∑N+1

j=1 uj and Un−1 =
∑n−1

j=1 uj . Therefore we can control the difference

of the multiple integral (8.6) and the multiple integral (8.7) as follows.

|q∆T,0(ℏ, x, ξ0, x0)− q(∆T,TN+1
,∆Tn−1,0)(ℏ, x, ξ0, x0)|(8.8)

≤ C ′′(TN+1 − Tn−1)(TN+1 − Tn−1 + UN+1 − Un−1)(1 + |x|+ |ξ0|+ |x0|)m

with a positive constant C ′′.

§ 8.3. Phase space Feynman path integrals exist

Noting (8.8), we can obtain the following theorem which proves Theorem 2.

Theorem 5. Let T be sufficiently small. For any multi-indices α, β, there exist

positive constants Cα,β, C
′
α,β such that

|∂α
x ∂

β
ξ0
q∆T,0(ℏ, x, ξ0, x0)| ≤ Cα,β(1 + |x|+ |ξ0|+ |x0|)m ,

|∂α
x ∂

β
ξ0
(q∆T,0

(ℏ, x, ξ0, x0)− q(T, ℏ, x, ξ0, x0))|
≤ C ′

α,β |∆T,0|(T + U)(1 + |x|+ |ξ0|+ |x0|)m

with a limit function q(T, ℏ, x, ξ0, x0) = lim|∆T,0|→0 q∆T,0(ℏ, x, ξ0, x0), i.e.,

the multiple integral (2.7) converges on compact subsets of R3d as |∆T,0| → 0.

Remark. The class F is an algebra because we added assumptions closed under

addition and multiplication. Furthermore, by accident, F contains the examples in

Example 2.

§ 9. Appendix

§ 9.1. An example

We give an example which illustrates what happens if T is not small.

Let d = 1, H(x, ξ) = x2/2 + ξ2/2 and F [q, p] ≡ 1. Assume |Tj − Tj−1| < π/2. As

in (2.3), by the canonical equation

∂tq̄Tj ,Tj−1(t) = p̄Tj ,Tj−1(t) , ∂tp̄Tj ,Tj−1(t) = −q̄Tj ,Tj−1(t) , Tj−1 ≤ t ≤ Tj ,

q̄Tj ,Tj−1(Tj) = xj , p̄Tj ,Tj−1(Tj−1) = ξj−1 ,

we have the bicharacteristic paths

q̄Tj ,Tj−1(t) =
xj cos(t− Tj−1)− ξj−1 sin(Tj − t)

cos(Tj − Tj−1)
,

p̄Tj ,Tj−1(t) =
−xj sin(t− Tj−1) + ξj−1 cos(Tj − t)

cos(Tj − Tj−1)
.



Phase space Feynman path integrals via piecewise bicharacteristic paths 133

As in (2.4) and (2.5), using the piecewise bicharacteristic paths

qTj ,Tj−1(t) = q̄Tj ,Tj−1(t), Tj−1 < t ≤ Tj , qTj ,Tj−1(Tj−1) = xj−1,

pTj ,Tj−1(t) = p̄Tj ,Tj−1(t), Tj−1 ≤ t < Tj ,

we have the phase function

ϕTj ,Tj−1(xj , ξj−1, xj−1)(9.1)

=

∫
[Tj−1,Tj)

pTj ,Tj−1 · dqTj ,Tj−1 −
∫
[Tj−1,Tj)

H(qTj ,Tj−1 , pTj ,Tj−1)dt

= (q̄Tj ,Tj−1(Tj−1)− xj−1) · ξj−1

+
1

2

∫ Tj

Tj−1

p̄Tj ,Tj−1 · dq̄Tj ,Tj−1 +
1

2

[
p̄Tj ,Tj−1 · q̄Tj ,Tj−1

]Tj

Tj−1

−1

2

∫ Tj

Tj−1

q̄Tj ,Tj−1 · dp̄Tj ,Tj−1 −
1

2

∫ Tj

Tj−1

(q̄2Tj ,Tj−1
+ p̄2Tj ,Tj−1

)dt

= −xj−1 · ξj−1 +
p̄Tj ,Tj−1(Tj)xj + q̄Tj ,Tj−1(Tj−1)ξj−1

2

= −xj−1 · ξj−1 +
2xj · ξj−1 − (x2

j + ξ2j−1) sin(Tj − Tj−1)

2 cos(Tj − Tj−1)
.

First we consider the case for the division T = T2 > T1 > T0 = 0. As in (6.1), set

(9.2) e
i
ℏϕT,0(x2,ξ0,x0)qT,T1,0 =

(
1

2πℏ

)∫
R2

e
i
ℏϕT,T1,0(x2,ξ1,x1,ξ0,x0)dx1dξ1 ,

where

ϕT,T1,0 = ϕT2,T1(x2, ξ1, x1) + ϕT1,T0(x1, ξ0, x0) .

From (9.1), we have

(−1) det(∂2
(ξ1,x1)

ϕT,T1,0)

= (−1) det

[
− tan(T2 − T1) −1

−1 − tan(T1 − T0)

]

= 1− sin(T2 − T1)

cos(T2 − T1)

sin(T1 − T0)

cos(T1 − T0)
=

cosT

cos(T2 − T1) cos(T1 − T0)
.

Therefore, performing the integration (9.2), we get

qT,T1,0 =

(
cos(T2 − T1) cos(T1 − T0)

cosT

)1/2

.

Next we consider the case for the general division ∆T,0. As in (6.1), set

(9.3) e
i
ℏϕT,0(x,ξ0,x0)q∆T,0

=

(
1

2πℏ

)J ∫
R2J

e
i
ℏϕ∆T,0

(xJ+1,ξJ ,xJ ,...,ξ1,x1,ξ0,x0)
J∏

j=1

dxjdξj .
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Performing the integration (9.3) inductively, we get

q∆T,0
=

(∏J+1
j=1 cos(Tj − Tj−1)

cosT

)1/2

.

Therefore, from (1.6) and (2.7), we can calculate the function U(T, 0, x, ξ0) of the fun-

damental solution U(T, 0) for the Schrödinger equation as follows.

e
i
ℏ (x−x0)·ξ0U(T, 0, x, ξ0) =

∫
e

i
ℏϕ[q,p]D[q, p]

≡ lim
|∆T,0|→0

(
1

2πℏ

)J ∫
R2J

e
i
ℏϕ[q∆T,0

,p∆T,0
]

J∏
j=1

dxjdξj = lim
|∆T,0|→0

e
i
ℏϕT,0(x,ξ0,x0)q∆T,0

=
1

(cosT )1/2
exp

i

ℏ

(
− x0 · ξ0 +

2x · ξ0 − (x2 + ξ20) sinT

2 cosT

)
.

Remark. Theorems 5 and 4 are not valid when T = π/2.

§ 9.2. Convergence in the uniform operator topology

As in (1.3), using the Fourier integral operator

I ′(Tj , Tj−1)v(x) =

(
1

2πℏ

)d ∫
R2d

e
i
ℏϕTj,Tj−1

(x,ξ0,x0)v(x0)dx0dξ0 ,

we consider (2.7) with F [q, p] ≡ 1 in the sense of the operator I ′(∆T,0) given by

I ′(∆T,0)v(x) = I ′(T, TJ )I
′(TJ , TJ−1) · · · I ′(T2, T1)I

′(T1, 0)v(x) .

Noting Theorem 5 under Assumption 2 with m = 0 and uj = 0, j = 1, 2, . . . , J, J + 1,

we apply the L2-boundedness theorem of Fourier integral operators to I ′(∆T,0) and

U(T, 0). Then there exist a small positive constant τ and positive constants C1, C2

such that if 0 < T < τ ,

||I ′(∆T,0)v||L2 ≤ C1||v||L2 ,

∥I ′(∆T,0)v − U(T, 0)v∥L2 ≤ C2|∆T,0|T ||v||L2 .

Therefore, we have

||U(T, 0)v||L2 ≤ C1||v||L2 .

Next we consider the case when T ≥ τ . Let |∆T,0| < τ/2. Using the number K with

K < 2T/τ ≤ K+1, we choose the numbers 0 = j0 < j1 < j2 < · · · < jK < jK+1 = J+1

such that Tjk ≤ kT/(K + 1) < Tjk+1 for k = 1, 2, . . . ,K.
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Since Tjk+1
− Tjk < 2T/(K + 1) ≤ τ , we have

||I ′(∆T,0)v||L2 = ||I ′(∆T,TjK
)I ′(∆TjK

,TjK−1
) · · · I ′(∆Tj2 ,Tj1

)I ′(∆Tj1 ,0
)v||L2

≤ (max(C1, 1))
K+1||v||L2 ≤ C ′

1||v||L2

with C ′
1 = (max(C1, 1))

2T/τ+1. Furthermore, using

U(T, 0) = U(T, TJ )U(TJ , TJ−1) · · ·U(T2, T1)U(T1, 0) ,

we obtain

||I ′(∆T,0)v − U(T, 0)v||L2

≤
K+1∑
k=1

∥∥∥I ′(∆T,Tjk
)
(
I ′(∆Tjk

,Tjk−1
)− U(Tjk , Tjk−1

)
)
U(Tjk−1

, 0)v
∥∥∥
L2

≤
K+1∑
k=1

C ′
1C2|∆Tjk

,Tjk−1
|(Tjk − Tjk−1

)C ′
1||v||L2 ≤ C ′

2|∆T,0|T ||v||L2

with C ′
2 = C ′

1C2C
′
1. This implies that I ′(∆T,0) converges to U(T, 0) as |∆T,0| → 0 in

the uniform operator topology even when T is large.
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