68 research outputs found

    Magnetohydrodynamic Simulations for Studying Solar Flare Trigger Mechanism

    Full text link
    In order to understand the flare trigger mechanism, we conducted three-dimensional magnetohydrodynamic simulations using a coronal magnetic field model derived from data observed by the Hinode satellite. Several types of magnetic bipoles were imposed into the photospheric boundary of the Non-linear Force-Free Field (NLFFF) model of Active Region NOAA 10930 on 2006 December 13 to investigate what kind of magnetic disturbance may trigger the flare. As a result, we confirm that certain small bipole fields, which emerge into the highly sheared global magnetic field of an active region, can effectively trigger a flare. These bipole fields can be classified into two groups based on their orientation relative to the polarity inversion line: the so called opposite polarity (OP) and reversed shear (RS) structures as it was suggested by Kusano et al. (2012). We also investigated the structure of the footpoints of reconnected field lines. By comparing the distribution of reconstructed field lines and the observed flare ribbons, the trigger structure of the flare can be inferred. Our simulation suggests that the data-constrained simulation taking into account both the large-scale magnetic structure and the small-scale magnetic disturbance such as emerging fluxes is a good way to find out a flare productive active region for space weather prediction.Comment: 28 pages, 10 figure

    Development of a coronal mass ejection arrival time forecasting system using interplanetary scintillation observations

    Full text link
    Coronal mass ejections (CMEs) cause disturbances in the environment of the Earth when they arrive at the Earth. However, the prediction of the arrival of CMEs still remains a challenge. We have developed an interplanetary scintillation (IPS) estimation system based on a global magnetohydrodynamic (MHD) simulation of the inner heliosphere to predict the arrival time of CMEs. In this system, the initial speed of a CME is roughly derived from white light coronagraph observations. Then, the propagation of the CME is calculated by a global MHD simulation. The IPS response is estimated by the three-dimensional density distribution of the inner heliosphere derived from the MHD simulation. The simulated IPS response is compared with the actual IPS observations made by the Institute for Space-Earth Environmental Research, Nagoya University, and shows good agreement with that observed. We demonstrated how the simulation system works using a halo CME event generated by a X9.3 flare observed on September 5, 2017. We find that the CME simulation that best estimates the IPS observation can more accurately predict the time of arrival of the CME at the Earth. These results suggest that the accuracy of the CME arrival time can be improved if our current MHD simulations include IPS data.Comment: 39 pages, 6 figures, accepted for publication in Earth, Planets and Spac

    MHD Modeling for Formation Process of Coronal Mass Ejections: Interaction between Ejecting Flux Rope and Ambient Field

    Full text link
    We performed magnetohydrodynamic simulation of a formation process of coronal mass ejections (CMEs), focusing on interaction (reconnection) between an ejecting flux rope and its ambient field. We examined three cases with different ambient fields: no ambient field, and cases with dipole field of two opposite directions which are parallel and anti-parallel to that of the flux rope surface. As a result, while the flux rope disappears in the anti-parallel case, in other cases the flux ropes can evolve to CMEs and show different amounts of rotation of the flux rope. The results imply that the interaction between an ejecting flux rope and its ambient field is an important process for determining CME formation and CME orientation, and also show that the amount and direction of magnetic flux within the flux rope and the ambient field are key parameters for CME formation. Especially, the interaction (reconnection) plays a significant role to the rotation of the flux rope, with a process similar to "tilting instability" in a spheromak-type experiment of laboratory plasma.Comment: 24 pages, 5 figures. Accepted for publication in Ap

    Magnetohydrodynamic Modeling of Solar Wind and Coronal Mass Ejections on the Basis of Solar Observations

    Get PDF
    第6回極域科学シンポジウム[OS] 宙空圏11月16日(月) 国立極地研究所 2階 大会議
    corecore