437 research outputs found

    Metabolic and vascular effect of the mediterranean diet

    Get PDF
    Several studies indicated how dietary patterns that were obtained from nutritional cluster analysis can predict disease risk or mortality. Low-grade chronic inflammation represents a background pathogenetic mechanism linking metabolic risk factors to increased risk of chronic degenerative diseases. A Mediterranean diet (MeDi) style has been reported as associated with a lower degree of inflammation biomarkers and with a protective role on cardiovascular and cerebrovascular events. There is heterogeneity in defining the MedDiet, and it can, owing to its complexity, be considered as an exposome with thousands of nutrients and phytochemicals. Recently, it has been reported a novel positive association between baseline plasma ceramide concentrations and cardiovascular events and how adherence to a Mediterranean Diet-style may influence the potential negative relationship between elevated plasma ceramide concentrations and cardiovascular diseases (CVD). Several randomized controlled trials (RCTs) showed the positive effects of the MeDi diet style on several cardiovascular risk factors, such as body mass index, waist circumference, blood lipids, blood pressure, inflammatory markers and adhesion molecules, and diabetes and how these advantages of the MeDi are maintained in comparison of a low-fat diet. Some studies reported a positive effect of adherence to a Mediterranean Diet and heart failure incidence, whereas some recent studies, such as the PREDIMED study, showed that the incidence of major cardiovascular events was lower among those assigned to MeDi supplemented with extra-virgin olive oil or nuts than among those assigned to a reduced-fat diet. New studies are needed to better understand the molecular mechanisms, whereby the MedDiet may exercise its effects. Here, we present recent advances in understanding the molecular basis of MedDiet effects, mainly focusing on cardiovascular diseases, but also discussing other related diseases. We review MedDiet composition and assessment as well as the latest advances in the genomic, epigenomic (DNA methylation, histone modifications, microRNAs, and other emerging regulators), transcriptomic (selected genes and whole transcriptome), and metabolomic and metagenomic aspects of the MedDiet effects (as a whole and for its most typical food components). We also present a review of the clinical effects of this dietary style underlying the biochemical and molecular effects of the Mediterranean diet. Our purpose is to review the main features of the Mediterranean diet in particular its benefits on human health, underling the anti-inflammatory, anti-oxidant and anti-atherosclerotic effects to which new knowledge about epigenetic and gut-microbiota relationship is recently added

    Non-coding RNAs and other determinants of neuroinflammation and endothelial dysfunction: Regulation of gene expression in the acute phase of ischemic stroke and possible therapeutic applications

    Get PDF
    Ischemic stroke occurs under a variety of clinical conditions and has different pathogeneses, resulting in necrosis of brain parenchyma. Stroke pathogenesis is characterized by neuroinflammation and endothelial dysfunction. Some of the main processes triggered in the early stages of ischemic damage are the rapid activation of resident inflammatory cells (microglia, astrocytes and endothelial cells), inflammatory cytokines, and translocation of intercellular nuclear factors. Inflammation in stroke includes all the processes mentioned above, and it consists of either protective or detrimental effects concerning the 'polarization' of these processes. This polarization comes out from the interaction of all the molecular pathways that regulate genome expression: the epigenetic factors. In recent years, new regulation mechanisms have been cleared, and these include non-coding RNAs, adenosine receptors, and the activity of mesenchymal stem/stromal cells and microglia. We reviewed how long non-coding RNA and microRNA have emerged as an essential mediator of some neurological diseases. We also clarified that their roles in cerebral ischemic injury may provide novel targets for the treatment of ischemic stroke. To date, we do not have adequate tools to control pathophysiological processes associated with stroke. Our goal is to review the role of non-coding RNAs and innate immune cells (such as microglia and mesenchymal stem/stromal cells) and the possible therapeutic effects of their modulation in patients with acute ischemic stroke. A better understanding of the mechanisms that influence the 'polarization' of the inflammatory response after the acute event seems to be the way to change the natural history of the disease

    Neuroinflammatory mechanisms in ischemic stroke: Focus on cardioembolic stroke, background, and therapeutic approaches

    Get PDF
    One of the most important causes of neurological morbidity and mortality in the world is ischemic stroke. It can be a result of multiple events such as embolism with a cardiac origin, occlusion of small vessels in the brain, and atherosclerosis affecting the cerebral circulation. Increasing evidence shows the intricate function played by the immune system in the pathophysiological variations that take place after cerebral ischemic injury. Following the ischemic cerebral harm, we can observe consequent neuroinflammation that causes additional damage provoking the death of the cells; on the other hand, it also plays a beneficial role in stimulating remedial action. Immune mediators are the origin of signals with a proinflammatory position that can boost the cells in the brain and promote the penetration of numerous inflammatory cytotypes (various subtypes of T cells, monocytes/macrophages, neutrophils, and different inflammatory cells) within the area affected by ischemia; this process is responsible for further ischemic damage of the brain. This inflammatory process seems to involve both the cerebral tissue and the whole organism in cardioembolic stroke, the stroke subtype that is associated with more severe brain damage and a consequent worse outcome (more disability, higher mortality). In this review, the authors want to present an overview of the present learning of the mechanisms of inflammation that takes place in the cerebral tissue and the role of the immune system involved in ischemic stroke, focusing on cardioembolic stroke and its potential treatment strategies

    Acquired von Willebrand syndrome in patients with monoclonal gammopathy of undetermined significance investigated using a mechanistic approach

    Get PDF
    BACKGROUND: Acquired von Willebrand syndrome (AVWS) has been reported to occur in association with monoclonal gammopathy, usually of undetermined significance (MGUS). It may present as a type 1 or type 2 von Willebrand factor (VWF) defect depending on the patient’s representation of large VWF multimers. MATERIALS AND METHODS: The mathematical model by Galvanin et al., already employed for studying inherited von Willebrand disease (VWD), was used to explore the pathogenic mechanisms behind MGUS-associated AVWS. RESULTS: The patients studied showed significantly reduced VWF levels and function; an increased VWF propeptide to VWF antigen ratio; and all VWF multimers present but in reduced quantities, with the low-molecular-weight VWF forms being significantly more represented than those of higher molecular weight. Our mathematical model revealed a significantly increased VWF elimination rate constant, with values similar to those of type Vicenza VWD. An even more increased VWF proteolysis rate constant was observed, with values one order of magnitude higher than in type 2A VWD but, in contrast, no loss of large multimers. The model predicted the same elimination rate for high- and low-molecular-weight VWF multimers, but proteolysis of the high-molecular-weight forms also contributes to the pool of low-molecular-weight oligomers, which explains why they were relatively over-represented. DISCUSSION: In MGUS-associated AVWS the increase of both clearance and proteolysis contributes to the circulating levels and multimer pattern of VWF, with a phenotype that appears to be a combination of type Vicenza and type 2A VWD. Hence, the mechanisms behind the onset of AVWS seem to differ from those of inherited VWD

    Severe anaemia after gastric biopsy in an infant with eosinophilic gastritis

    Get PDF
    Background: Eosinophilic gastrointestinal disorders (EGID) are characterized by eosinophilic inflammation and are subclassified according to the affected site(s) as eosinophilic esophagitis, eosinophilic gastritis, eosinophilic enteritis and eosinophilic colitis. Clinical presentation includes dyspeptic symptoms, vomiting, abdominal pain, diarrhoea and gastrointestinal bleeding. Peripheral eosinophilia is usually found but is not required for the diagnosis. The treatment is based on dietary elimination therapy, consisting of removal of common food triggers, most frequently cow's milk in infants. Corticosteroids are used as first line drug therapy in EG if dietary therapy fails to achieve an adequate clinical response or is impractical. Case presentation: A four month old infant was admitted for an episode of melena and hematemesis. An esophagogastroduodenoscopy showed haemorrhagic gastritis with ulcerative lesions and fibrin. A significant gastric bleeding was noted after the procedure. The gastric mucosa biopsies showed an eosinophilic infiltration. Conclusions: A clinically relevant anaemia is a quite rare complication in infants with eosinophilic gastritis and a biopsy may worsen bleeding, to a potentially severe level of low haemoglobin. In infants with low haemoglobin levels and suspect eosinophilic gastritis a watchful follow up after the biopsy should be considered, as well as the possibility of postponing the biopsy to reduce the bleeding risk

    Molecular Biology of Atherosclerotic Ischemic Strokes

    Get PDF
    Among the causes of global death and disability, ischemic stroke (also known as cerebral ischemia) plays a pivotal role, by determining the highest number of worldwide mortality, behind cardiomyopathies, affecting 30 million people. The etiopathogenetic burden of a cerebrovascular accident could be brain ischemia (~80%) or intracranial hemorrhage (~20%). The most common site when ischemia occurs is the one is perfused by middle cerebral arteries. Worse prognosis and disablement consequent to brain damage occur in elderly patients or affected by neurological impairment, hypertension, dyslipidemia, and diabetes. Since, in the coming years, estimates predict an exponential increase of people who have diabetes, the disease mentioned above constitutes together with stroke a severe social and economic burden. In diabetic patients after an ischemic stroke, an exorbitant activation of inflammatory molecular pathways and ongoing inflammation is responsible for more severe brain injury and impairment, promoting the advancement of ischemic stroke and diabetes. Considering that the ominous prognosis of ischemic brain damage could by partially clarified by way of already known risk factors the auspice would be modifying poor outcome in the post-stroke phase detecting novel biomolecules associated with poor prognosis and targeting them for revolutionary therapeutic strategies

    Activity of a trinuclear platinum complex in human ovarian cancer cell lines sensitive and resistant to cisplatin: cytotoxicity and induction and gene-specific repair of DNA lesions

    Get PDF
    A collateral sensitivity or a very modest cross-resistance to BBR 3464 was found in 2 ovarian cancer cell lines with experimentally induced resistance to cisplatin. Loss of mismatch repair proteins (hMLH1, hPMS2) or overexpression of nucleotide excision repair proteins (ERCC1) was not detrimental for the cellular sensitivity to BBR 3464. Moreover, interesting differences in the kinetics of formation and removal of DNA lesions at the single-gene (N- ras) level were observed between BBR 3464 and CDDP. © 2001 Cancer Research Campaign www.bjcancer.co
    • …
    corecore