136 research outputs found

    Three-dimensional Assessment of Femoral Head Coverage in Normal and Dysplastic Hips: A Novel Method

    Get PDF
    The acetabular coverage of the femoral head has been assessed in two-dimensions as the projected covered area or the covered angle on plain radiographs. We present a novel method of the three-dimensional assessment of femoral head coverage obtained by evaluating the covered volume of the femoral head in both normal and dysplastic hips. We also assessed the covered angles on the vertical slices passing through the center of the femoral head. The mean covered volume of the femoral head was 57.4% in normal hips and 26.6% in dysplastic hips. In dysplastic hips, the L-CE, A-CE, and P-CE angles were 7.7°, 21.8°, and 95.8°, respectively, while the acetabular angle was 27.5°. In normal hips, the CE angles were 34.0°, 56.8°, and 109.4°, respectively, while the acetabular angle was 7.2°. Our study suggests the usefulness of a novel 3D assessment for acetabular coverage of the femoral head. This assessment provided the precise 3D information necessary to diagnose hip dysplasia and assess the deficiency of acetabular coverage in these patients. Moreover, we may detect a cut-off between normal and dysplastic hips in the 3D assessment by assessing a large number of dysplastic hips both morphologically and using the new assessment

    Quantum fluctuations in high field magnetization of 2D square lattice J1-J2 antiferromagnets

    Full text link
    The J1-J2 square lattice Heisenberg model with spin S=1/2 has three phases with long-range magnetic order and two unconventionally ordered phases depending on the ratio of exchange constants. It describes a number of recently found layered vanadium oxide compounds. A simple means of investigating the ground state is the study of the magnetization curve and high-field susceptibility. We discuss these quantities by using the spin-wave theory and the exact diagonalization in the whole J1-J2 plane. We compare both results and find good overall agreement in the sectors of the phase diagram with magnetic order. Close to the disordered regions the magnetization curve shows strong deviations from the classical linear behaviour caused by large quantum fluctuations and spin-wave approximation breaks down. On the FM side (J1<0) where one approaches the quantum gapless spin nematic ground state this region is surprisingly large. We find that inclusion of second order spin-wave corrections does not lead to fundamental improvement. Quantum corrections to the tilting angle of the ordered moments are also calculated. They may have both signs, contrary to the always negative first order quantum corrections to the magnetization. Finally we investigate the effect of the interlayer coupling and find that the quasi-2D picture remains valid up to |J_\perp/J1| ~ 0.3.Comment: 13 pages, 6figure

    Relationship between the Hip Abductor Muscles and Abduction Strength in Patients with Hip Osteoarthritis

    Get PDF
    This study aimed to determine which muscle the gluteus maximus, gluteus medius, gluteus minimus (Gmin), or tensor fasciae latae (TFL) contributes most to hip abduction strength and to identify effective sites for cross-sectional area (CSA) Gmin and TFL measurement in hip osteoarthritis (OAhip) patients. Twenty-eight patients with OAhip were included. The muscle CSA and volume were determined using magnetic resonance imaging. Peak isometric strength was determined using hand-held dynamometry. Muscle volumes were normalized to the total muscle volume of hip abductors. Multiple regression analysis was performed. The difference between the CSA of Gmin and TFL was calculated, and correlations with volume and muscle strength were determined. Gmin volume was related to abductor muscle strength (p=0.042). The peak CSA of the Gmin correlated with muscle volume and strength. The CSA of the TFL correlated with volume, with no difference between the CSA of the most protruding part of the lesser trochanter and peak CSA. Gmin volume was strongly related to abductor muscle strength. Peak CSA is a useful parameter for assessing the CSA of the Gmin among patients with OAhip. The CSA of the TFL should be measured at the most protruding part of the lesser trochanter

    MuSR studies of RE(O,F)FeAs (RE = La, Nd, Ce) and LaOFeP systems: possible incommensurate/stripe magnetism and superfluid density

    Full text link
    Muon spin relaxation (MuSR) measurements in iron oxy-pnictide systems have revealed: (1) commensurate long-range order in undoped LaOFeAs; (2) Bessel function line shape in La(O0.97F0.03)FeAs which indicates possible incommensurate or stripe magnetism; (3) anomalous weak magnetism existing in superconducting LaOFeP, Ce(O0.84F0.16)FeAs, and Nd(O0.88F0.12)FeAs but absent in superconducting La(O0.92F0.08)FeAs; and (4) scaling of superfluid density and Tc in the Ce, La, and Nd-FeAs superconductors following a nearly linear relationship found in cuprates.Comment: 4 pages, 5 figures (color

    2018 X-Ray and Radio Outburst of Magnetar XTE J1810–197

    Get PDF
    We present the earliest X-ray observations of the 2018 outburst of XTE J1810−197, the first outburst since its 2003 discovery as the prototypical transient and radio-emitting anomalous X-ray pulsar (AXP). The Monitor of All-sky X-ray Image (MAXI) detected XTE J1810−197 immediately after a November 20–26 visibility gap, contemporaneous with its reactivation as a radio pulsar, first observed on December 8. On December 13 the Nuclear Spectroscopic Telescope Array (NuSTAR) detected X-ray emission up to at least 30 keV, with a spectrum well-characterized by a blackbody plus power-law model with temperature kT = 0.74 ± 0.02 keV and photon index Γ = 4.4 ± 0.2 or by a two-blackbody model with kT = 0.59 ± 0.04 keV and kT = 1.0 ± 0.1 keV, both including an additional power-law component to account for emission above 10 keV, with Γ_h = −0.2 ± 1.5 and Γ_h = 1.5 ± 0.5, respectively. The latter index is consistent with hard X-ray flux reported for the nontransient magnetars. In the 2–10 keV bandpass, the absorbed flux is 2 × 10^(−10) erg s^(−1) cm^(−2), a factor of 2 greater than the maximum flux extrapolated for the 2003 outburst. The peak of the sinusoidal X-ray pulse lags the radio pulse by ≈0.13 cycles, consistent with their phase relationship during the 2003 outburst. This suggests a stable geometry in which radio emission originates on magnetic field lines containing currents that heat a spot on the neutron star surface. However, a measured energy-dependent phase shift of the pulsed X-rays suggests that all X-ray emitting regions are not precisely coaligned

    microRNA-33 maintains adaptive thermogenesis via enhanced sympathetic nerve activity

    Get PDF
    褐色脂肪細胞の燃焼を促す新たなメカニズムを解明 --体の熱産生にマイクロRNA-33が関与--. 京都大学プレスリリース. 2021-02-17.Adaptive thermogenesis is essential for survival, and therefore is tightly regulated by a central neural circuit. Here, we show that microRNA (miR)-33 in the brain is indispensable for adaptive thermogenesis. Cold stress increases miR-33 levels in the hypothalamus and miR-33−/− mice are unable to maintain body temperature in cold environments due to reduced sympathetic nerve activity and impaired brown adipose tissue (BAT) thermogenesis. Analysis of miR-33f/f dopamine-β-hydroxylase (DBH)-Cre mice indicates the importance of miR-33 in Dbh-positive cells. Mechanistically, miR-33 deficiency upregulates gamma-aminobutyric acid (GABA)A receptor subunit genes such as Gabrb2 and Gabra4. Knock-down of these genes in Dbh-positive neurons rescues the impaired cold-induced thermogenesis in miR-33f/f DBH-Cre mice. Conversely, increased gene dosage of miR-33 in mice enhances thermogenesis. Thus, miR-33 in the brain contributes to maintenance of BAT thermogenesis and whole-body metabolism via enhanced sympathetic nerve tone through suppressing GABAergic inhibitory neurotransmission. This miR-33-mediated neural mechanism may serve as a physiological adaptive defense mechanism for several stresses including cold stress

    Pairing symmetry and properties of iron-based high temperature superconductors

    Full text link
    Pairing symmetry is important to indentify the pairing mechanism. The analysis becomes particularly timely and important for the newly discovered iron-based multi-orbital superconductors. From group theory point of view we classified all pairing matrices (in the orbital space) that carry irreducible representations of the system. The quasiparticle gap falls into three categories: full, nodal and gapless. The nodal-gap states show conventional Volovik effect even for on-site pairing. The gapless states are odd in orbital space, have a negative superfluid density and are therefore unstable. In connection to experiments we proposed possible pairing states and implications for the pairing mechanism.Comment: 4 pages, 1 table, 2 figures, polished versio

    2018 X-Ray and Radio Outburst of Magnetar XTE J1810–197

    Get PDF
    We present the earliest X-ray observations of the 2018 outburst of XTE J1810−197, the first outburst since its 2003 discovery as the prototypical transient and radio-emitting anomalous X-ray pulsar (AXP). The Monitor of All-sky X-ray Image (MAXI) detected XTE J1810−197 immediately after a November 20–26 visibility gap, contemporaneous with its reactivation as a radio pulsar, first observed on December 8. On December 13 the Nuclear Spectroscopic Telescope Array (NuSTAR) detected X-ray emission up to at least 30 keV, with a spectrum well-characterized by a blackbody plus power-law model with temperature kT = 0.74 ± 0.02 keV and photon index Γ = 4.4 ± 0.2 or by a two-blackbody model with kT = 0.59 ± 0.04 keV and kT = 1.0 ± 0.1 keV, both including an additional power-law component to account for emission above 10 keV, with Γ_h = −0.2 ± 1.5 and Γ_h = 1.5 ± 0.5, respectively. The latter index is consistent with hard X-ray flux reported for the nontransient magnetars. In the 2–10 keV bandpass, the absorbed flux is 2 × 10^(−10) erg s^(−1) cm^(−2), a factor of 2 greater than the maximum flux extrapolated for the 2003 outburst. The peak of the sinusoidal X-ray pulse lags the radio pulse by ≈0.13 cycles, consistent with their phase relationship during the 2003 outburst. This suggests a stable geometry in which radio emission originates on magnetic field lines containing currents that heat a spot on the neutron star surface. However, a measured energy-dependent phase shift of the pulsed X-rays suggests that all X-ray emitting regions are not precisely coaligned
    corecore