235 research outputs found

    Verifying Policy Enforcers

    Get PDF
    Policy enforcers are sophisticated runtime components that can prevent failures by enforcing the correct behavior of the software. While a single enforcer can be easily designed focusing only on the behavior of the application that must be monitored, the effect of multiple enforcers that enforce different policies might be hard to predict. So far, mechanisms to resolve interferences between enforcers have been based on priority mechanisms and heuristics. Although these methods provide a mechanism to take decisions when multiple enforcers try to affect the execution at a same time, they do not guarantee the lack of interference on the global behavior of the system. In this paper we present a verification strategy that can be exploited to discover interferences between sets of enforcers and thus safely identify a-priori the enforcers that can co-exist at run-time. In our evaluation, we experimented our verification method with several policy enforcers for Android and discovered some incompatibilities.Comment: Oliviero Riganelli, Daniela Micucci, Leonardo Mariani, and Yli\`es Falcone. Verifying Policy Enforcers. Proceedings of 17th International Conference on Runtime Verification (RV), 2017. (to appear

    Diversity, mobility, and structural and functional evolution of group II introns carrying an unusual 3' extension

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Group II introns are widespread genetic elements endowed with a dual functionality. They are catalytic RNAs (ribozymes) that are able of self-splicing and they are also mobile retroelements that can invade genomic DNA. The group II intron RNA secondary structure is typically made up of six domains. However, a number of unusual group II introns carrying a unique extension of 53-56 nucleotides at the 3' end have been identified previously in bacteria of the <it>Bacillus cereus </it>group.</p> <p>Methods</p> <p>In the present study, we conducted combined sequence comparisons and phylogenetic analyses of introns, host gene, plasmid and chromosome of host strains in order to gain insights into mobility, dispersal, and evolution of the unusual introns and their extension. We also performed in vitro mutational and kinetic experiments to investigate possible functional features related to the extension.</p> <p>Results</p> <p>We report the identification of novel copies of group II introns carrying a 3' extension including the first two copies in bacteria not belonging to the <it>B. cereus </it>group, <it>Bacillus pseudofirmus </it>OF4 and <it>Bacillus sp</it>. 2_A_57_CT2, an uncharacterized species phylogenetically close to <it>B. firmus</it>. Interestingly, the <it>B. pseudofirmus </it>intron has a longer extension of 70 bases. From sequence comparisons and phylogenetic analyses, several possible separate events of mobility involving the atypical introns could be identified, including both retrohoming and retrotransposition events. In addition, identical extensions were found in introns that otherwise exhibit little sequence conservation in the rest of their structures, with the exception of the conserved and catalytically critical domains V and VI, suggesting either separate acquisition of the extra segment by different group II introns or a strong selection pressure acting on the extension. Furthermore, we show by in vitro splicing experiments that the 3' extension affects the splicing properties differently in introns belonging to separate evolutionary branches.</p> <p>Conclusions</p> <p>Altogether this study provides additional insights into the structural and functional evolution of unusual introns harboring a 3' extension and lends further evidence that these introns are mobile with their extension.</p

    Conservation of intron and intein insertion sites: implications for life histories of parasitic genetic elements

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inteins and introns are genetic elements that are removed from proteins and RNA after translation or transcription, respectively. Previous studies have suggested that these genetic elements are found in conserved parts of the host protein. To our knowledge this type of analysis has not been done for group II introns residing within a gene. Here we provide quantitative statistical support from an analyses of proteins that host inteins, group I introns, group II introns and spliceosomal introns across all three domains of life.</p> <p>Results</p> <p>To determine whether or not inteins, group I, group II, and spliceosomal introns are found preferentially in conserved regions of their respective host protein, conservation profiles were generated and intein and intron positions were mapped to the profiles. Fisher's combined probability test was used to determine the significance of the distribution of insertion sites across the conservation profile for each protein. For a subset of studied proteins, the conservation profile and insertion positions were mapped to protein structures to determine if the insertion sites correlate to regions of functional activity. All inteins and most group I introns were found to be preferentially located within conserved regions; in contrast, a bacterial intein-like protein, group II and spliceosomal introns did not show a preference for conserved sites.</p> <p>Conclusions</p> <p>These findings demonstrate that inteins and group I introns are found preferentially in conserved regions of their respective host proteins. Homing endonucleases are often located within inteins and group I introns and these may facilitate mobility to conserved regions. Insertion at these conserved positions decreases the chance of elimination, and slows deletion of the elements, since removal of the elements has to be precise as not to disrupt the function of the protein. Furthermore, functional constrains on the targeted site make it more difficult for hosts to evolve immunity to the homing endonuclease. Therefore, these elements will better survive and propagate as molecular parasites in conserved sites. In contrast, spliceosomal introns and group II introns do not show significant preference for conserved sites and appear to have adopted a different strategy to evade loss.</p

    Association between serum keptin concentrations and insulin resistance: A population-based study from China

    Get PDF
    BACKGROUND Insulin resistance contributes to the cardio-metabolic risk. The effect of leptin in obese and overweight population on insulin resistance was seldom reported. METHODS A total of 1234 subjects (572 men and 662 women) aged β‰₯18 y was sampled by the procedure. Adiposity measures included BMI, waist circumference, hip circumference, WHR, upper arm circumference, triceps skinfold and body fat percentage. Serum leptin concentrations were measured by an ELISA method. The homeostasis model (HOMA-IR) was applied to estimate insulin resistance. RESULTS In men, BMI was the variable which was most strongly correlated with leptin, whereas triceps skinfold was most sensitive for women. More importantly, serum leptin levels among insulin resistant subjects were almost double compared to the subjects who had normal insulin sensitivity at the same level of adiposity in both men and women, after controlling for potential confounders. In addition, HOMA-IR increased significantly across leptin quintiles after adjustment for age, BMI, total energy intake, physical activity and smoking status in both men and women (p for trend <0.0001). CONCLUSIONS There was a significant association between HOMA-IR and serum leptin concentrations in Chinese men and women, independently of adiposity levels. This may suggest that serum leptin concentration is an important predictor of insulin resistance and other metabolic risks irrespective of obesity levels. Furthermore, leptin levels may be used to identify the cardio-metabolic risk in obese and overweight population.Hui Zuo, Zumin Shi, Baojun Yuan, Yue Dai, Gaolin Wu, Akhtar Hussai

    Glioblastoma Subclasses Can Be Defined by Activity among Signal Transduction Pathways and Associated Genomic Alterations

    Get PDF
    Glioblastoma multiforme (GBM) is an umbrella designation that includes a heterogeneous group of primary brain tumors. Several classification strategies of GBM have been reported, some by clinical course and others by resemblance to cell types either in the adult or during development. From a practical and therapeutic standpoint, classifying GBMs by signal transduction pathway activation and by mutation in pathway member genes may be particularly valuable for the development of targeted therapies.We performed targeted proteomic analysis of 27 surgical glioma samples to identify patterns of coordinate activation among glioma-relevant signal transduction pathways, then compared these results with integrated analysis of genomic and expression data of 243 GBM samples from The Cancer Genome Atlas (TCGA). In the pattern of signaling, three subclasses of GBM emerge which appear to be associated with predominance of EGFR activation, PDGFR activation, or loss of the RAS regulator NF1. The EGFR signaling class has prominent Notch pathway activation measured by elevated expression of Notch ligands, cleaved Notch receptor, and downstream target Hes1. The PDGF class showed high levels of PDGFB ligand and phosphorylation of PDGFRbeta and NFKB. NF1-loss was associated with lower overall MAPK and PI3K activation and relative overexpression of the mesenchymal marker YKL40. These three signaling classes appear to correspond with distinct transcriptomal subclasses of primary GBM samples from TCGA for which copy number aberration and mutation of EGFR, PDGFRA, and NF1 are signature events.Proteomic analysis of GBM samples revealed three patterns of expression and activation of proteins in glioma-relevant signaling pathways. These three classes are comprised of roughly equal numbers showing either EGFR activation associated with amplification and mutation of the receptor, PDGF-pathway activation that is primarily ligand-driven, or loss of NF1 expression. The associated signaling activities correlating with these sentinel alterations provide insight into glioma biology and therapeutic strategies

    ILK Induces Cardiomyogenesis in the Human Heart

    Get PDF
    Integrin-linked kinase (ILK) is a widely conserved serine/threonine kinase that regulates diverse signal transduction pathways implicated in cardiac hypertrophy and contractility. In this study we explored whether experimental overexpression of ILK would up-regulate morphogenesis in the human fetal heart.Primary cultures of human fetal myocardial cells (19-22 weeks gestation) yielded scattered aggregates of cardioblasts positive for the early cardiac lineage marker nk Γ— 2.5 and containing nascent sarcomeres. Cardiac cells in colonies uniformly expressed the gap junction protein connexin 43 (C Γ— 43) and displayed a spectrum of differentiation with only a subset of cells exhibiting the late cardiomyogenic marker troponin T (cTnT) and evidence of electrical excitability. Adenovirus-mediated overexpression of ILK potently increased the number of new aggregates of primitive cardioblasts (p<0.001). The number of cardioblast colonies was significantly decreased (p<0.05) when ILK expression was knocked down with ILK targeted siRNA. Interestingly, overexpression of the activation resistant ILK mutant (ILK(R211A)) resulted in much greater increase in the number of new cell aggregates as compared to overexpression of wild-type ILK (ILK(WT)). The cardiomyogenic effects of ILK(R211A) and ILK(WT) were accompanied by concurrent activation of Ξ²-catenin (p<0.001) and increase expression of progenitor cell marker islet-1, which was also observed in lysates of transgenic mice with cardiac-specific over-expression of ILK(R211A) and ILK(WT). Finally, endogenous ILK expression was shown to increase in concert with those of cardiomyogenic markers during directed cardiomyogenic differentiation in human embryonic stem cells (hESCs).In the human fetal heart ILK activation is instructive to the specification of mesodermal precursor cells towards a cardiomyogenic lineage. Induction of cardiomyogenesis by ILK overexpression bypasses the requirement of proximal PI3K activation for transduction of growth factor- and Ξ²1-integrin-mediated differentiation signals. Altogether, our data indicate that ILK represents a novel regulatory checkpoint during human cardiomyogenesis

    Deciphering Heterogeneity in Pig Genome Assembly Sscrofa9 by Isochore and Isochore-Like Region Analyses

    Get PDF
    Background: The isochore, a large DNA sequence with relatively small GC variance, is one of the most important structures in eukaryotic genomes. Although the isochore has been widely studied in humans and other species, little is known about its distribution in pigs. Principal Findings: In this paper, we construct a map of long homogeneous genome regions (LHGRs), i.e., isochores and isochore-like regions, in pigs to provide an intuitive version of GC heterogeneity in each chromosome. The LHGR pattern study not only quantifies heterogeneities, but also reveals some primary characteristics of the chromatin organization, including the followings: (1) the majority of LHGRs belong to GC-poor families and are in long length; (2) a high gene density tends to occur with the appearance of GC-rich LHGRs; and (3) the density of LINE repeats decreases with an increase in the GC content of LHGRs. Furthermore, a portion of LHGRs with particular GC ranges (50%–51 % and 54%–55%) tend to have abnormally high gene densities, suggesting that biased gene conversion (BGC), as well as time- and energy-saving principles, could be of importance to the formation of genome organization. Conclusion: This study significantly improves our knowledge of chromatin organization in the pig genome. Correlations between the different biological features (e.g., gene density and repeat density) and GC content of LHGRs provide a uniqu
    • …
    corecore