5,356 research outputs found

    A Novel Network NOMA Scheme for Downlink Coordinated Three-Point Systems

    Full text link
    In this paper, we propose a network non-orthogonal multiple access (N-NOMA) technique for the downlink coordinated multipoint (CoMP) communication scenario of a cellular network, with randomly deployed users. In the considered N-NOMA scheme, superposition coding (SC) is employed to serve cell-edge users as well as users close to base stations (BSs) simultaneously, and distributed analog beamforming by the BSs to meet the cell-edge user's quality of service (QoS) requirements. The combination of SC and distributed analog beamforming significantly complicates the expressions for the signal-to-interference-plus-noise ratio (SINR) at the reveiver, which makes the performance analysis particularly challenging. However, by using rational approximations, insightful analytical results are obtained in order to characterize the outage performance of the considered N-NOMA scheme. Computer simulation results are provided to show the superior performance of the proposed scheme as well as to demonstrate the accuracy of the analytical results

    On the Multivariate Gamma-Gamma (ΓΓ\Gamma \Gamma) Distribution with Arbitrary Correlation and Applications in Wireless Communications

    Get PDF
    The statistical properties of the multivariate Gamma-Gamma (ΓΓ\Gamma \Gamma) distribution with arbitrary correlation have remained unknown. In this paper, we provide analytical expressions for the joint probability density function (PDF), cumulative distribution function (CDF) and moment generation function of the multivariate ΓΓ\Gamma \Gamma distribution with arbitrary correlation. Furthermore, we present novel approximating expressions for the PDF and CDF of the sum of ΓΓ\Gamma \Gamma random variables with arbitrary correlation. Based on this statistical analysis, we investigate the performance of radio frequency and optical wireless communication systems. It is noteworthy that the presented expressions include several previous results in the literature as special cases.Comment: 7 pages, 6 figures, accepted by IEEE Transactions on Vehicular Technolog

    Correcting for the solar wind in pulsar timing observations: the role of simultaneous a nd l ow-frequency observations

    Full text link
    The primary goal of the pulsar timing array projects is to detect ultra-low-frequency gravitational waves. The pulsar data sets are affected by numerous noise processes including varying dispersive delays in the interstellar medium and from the solar wind. The solar wind can lead to rapidly changing variations that, with existing telescopes, can be hard to measure and then remove. In this paper we study the possibility of using a low frequency telescope to aid in such correction for the Parkes Pulsar Timing Array (PPTA) and also discuss whether the ultra-wide-bandwidth receiver for the FAST telescope is sufficient to model the solar wind variations. Our key result is that a single wide-bandwidth receiver can be used to model and remove the effect of the solar wind. However, for pulsars that pass close to the Sun such as PSR J1022+1022, the solar wind is so variable that observations at two telescopes separated by a day are insufficient to correct the solar wind effect.Comment: accepted by RA

    Gravitational Microlensing by Neutron Stars and Radio Pulsars: Event Rates, Timescale Distributions, and Mass Measurements

    Full text link
    We investigate properties of Galactic microlensing events in which a stellar object is lensed by a neutron star. For an all-sky photometric microlensing survey, we determine the number of lensing events caused by ∼105\sim10^{5} potentially-observable radio pulsars to be ∼0.2 yr−1\sim0.2\ \rm{yr^{-1}} for 101010^{10} background stellar sources. We expect a few detectable events per year for the same number of background sources from an astrometric microlensing survey. We show that such a study could lead to precise measurements of radio pulsar masses. For instance, if a pulsar distance could be constrained through radio observations, then its mass would be determined with a precision of ∼10%\sim10\%. We also investigate the time-scale distributions for neutron star events, finding that they are much shorter than had been previously thought. For photometric events towards the Galactic centre that last ∼15\sim15 days, around 7%7\% will have a neutron star lens. This fraction drops rapidly for longer time-scales. Away from the bulge region we find that neutron stars will contribute ∼40%\sim40\% of the events that last less than ∼10\sim10 days. These results are in contrast to earlier work which found that the maximum fraction of neutron star events would occur on time-scales of hundreds of days.Comment: 10 pages, accepted for publication in ApJ. v2 updated to reflect change of title in proof stag

    X-ray Monitoring of Gravitational Lenses With Chandra

    Full text link
    We present \emph{Chandra} monitoring data for six gravitationally lensed quasars: QJ 0158−-4325, HE 0435−-1223, HE 1104−-1805, SDSS 0924+0219, SDSS 1004+4112, and Q 2237+0305. We detect X-ray microlensing variability in all six lenses with high confidence. We detect energy dependent microlensing in HE 0435−-1223, SDSS 1004+4112, SDSS 0924+0219 and Q 2237+0305. We present a detailed spectral analysis for each lens, and find that simple power-law models plus Gaussian emission lines give good fits to the spectra. We detect intrinsic spectral variability in two epochs of Q 2237+0305. We detect differential absorption between images in four lenses. We also detect the \feka\ emission line in all six lenses, and the Ni XXVII Kα\alpha line in two images of Q 2237+0305. The rest frame equivalent widths of the \feka\ lines are measured to be 0.4--1.2 keV, significantly higher than those measured in typical active galactic nuclei of similar X-ray luminosities. This suggests that the \feka\ emission region is more compact or centrally concentrated than the continuum emission region.Comment: 55 pages, 22 figure
    • …
    corecore