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On the Multivariate Gamma-Gamma (ΓΓ) Distribution
with Arbitrary Correlation and Applications in

Wireless Communications
Jiayi Zhang,Member, IEEE,Michail Matthaiou,Senior Member, IEEE,George K. Karagiannidis,Fellow, IEEE,

and Linglong Dai,Senior Member, IEEE

Abstract—The statistical properties of the multivariate Gamma-
Gamma (ΓΓ) distribution with arbitrary correlation have remained
unknown. In this paper, we provide analytical expressions for the
joint probability density function (PDF), cumulative dist ribution
function (CDF) and moment generation function of the multivariate
ΓΓ distribution with arbitrary correlation. Furthermore, we present
novel approximating expressions for the PDF and CDF of the sum
of ΓΓ random variables with arbitrary correlation. Based on this
statistical analysis, we investigate the performance of radio frequency
and optical wireless communication systems. It is noteworthy that
the presented expressions include several previous results in the
literature as special cases.

Index Terms—Diversity receivers, free-space optical communica-
tions, multivariate ΓΓ distribution.

I. I NTRODUCTION

In practical wireless communications, the electromagnetic sig-
nal experiences composite small-scale fading and shadowing
simultaneously. Over the past decades, several works have fo-
cused on the performance analysis of wireless systems over
composite fading channels [1], [3], [4]. On a different note,
diversity techniques are widely used to reduce the effects of
multipath fading. If the antennas are sufficiently separated, it is
reasonable to assume that signals received by different antennas
are independent. However, this assumption is intimately crude for
systems with closely spaced antennas, such as mobile phones. In
general, correlation between channels results in a degradation of
the diversity gain. Therefore, it is important to quantify rigorously
the effects of correlation in real-life practical scenarios.

Recently, the Gamma-Gamma (ΓΓ) distribution has been pro-
posed as a general and mathematically tractable composite fading
model [2], [5], [6]. The ΓΓ distribution is equivalent to the
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squared generalized-K distribution and includes the squaredK
distribution and double-Rayleigh distribution as specialcases.
In radio frequency (RF) communications, the performance of
diversity systems overΓΓ fading channels has been analyzed in
[5], [6]. In particular, [5] investigated the outage probability (OP)
of selection combining (SC) receivers, as well as the average bit
error rate (BER) of maximal ratio combining (MRC) receivers
operating over exponentially correlated distributed fading chan-
nels. Furthermore, a simple approximation for the distribution of
the sum of independent distributedΓΓ random variables (RVs)
was provided in [6]. However, all these works are based on the
assumption of independent or exponentially correlatedΓΓ RVs.
Furthermore, theΓΓ distribution has been used in the performance
investigation of free-space optical (FSO) links over atmospheric
turbulence conditions [6]–[9]. These previous results arenot
theoretically attractive when the underlying FSO links arenot
independently distributed. To the best of the authors’ knowledge,
a statistical analysis ofthe multivariateΓΓ distribution with
arbitrary correlation is still not available in the literature.

Motivated by the above discussion, this paper makes the
following specific contributions:

• Using the Green’s matrix approximation [10], we derived
new analytical expressions for the probability density func-
tion (PDF), cumulative distribution function (CDF) and mo-
ment generation function (MGF) of the jointΓΓ distribution
with arbitrary correlation. We point out that the presentedre-
sults encompass several previously known results as special
cases (e.g., those in [2], [5], [11]).

• Efficient approximations to the PDF and CDF of the sum of
arbitrarily correlatedΓΓ RVs are derived for integer values
of fading severitym. The resulting expressions can be easily
and quickly evaluated by using a recursive formula.

• Furthermore, in order to reveal the importance of the
proposed statistical formulations, we study the perfor-
mance of SC and MRC receivers over arbitrarily correlated
generalized-K fading channels.

• Finally, in the context of FSO communication systems with
spatial diversity, we analyze the BER performance when
strong turbulence channels is assumed. The derived expres-
sion extends the results on independent and exponentially
correlatedΓΓ fading channels in [5].

Notations: We use upper and lower case boldface to denote
matrices and vectors, respectively. The expectation is given by
E(·). The norm of a vector is given by|| · ||, while the matrix
determinant by| · |. The Hermitian operation is defined as(·)†.
The set of integer numbers is expressed viaZ. Finally, letXXXi,j

denote the(i, j)-th element of the matrixXXX .

http://arxiv.org/abs/1505.06685v1
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II. M ULTIVARIATE DISTRIBUTION WITH ARBITRARY

CORRELATION

A. Multivariate Nakagami-m Distribution with Arbitrary Corre-
lation

Let r be a Nakagami-m RV, whose PDF is given by [10]

fr (r) =
2r2m−1

Γ (m)Ωm
exp

(

−r2

Ω

)

, r ≥ 0, (1)

whereΓ(·) represents the Gamma function [15, Eq. (8.310.1)],
Ω , E(r2)/m with E(r2) being the average power, andm ≥ 1/2
denotes the fading severity. Note that (1) is another representation
of the classical formula for the single Nakagami-m PDF. Without
loss of generality, letu be a Gamma RV which represents
shadowing and it is assumed in the following that E(u2) = 1.
Then, the PDF ofu can be expressed as [7]

fu (u) =
ββ

Γ (β)
uβ−1e−βu, u, β ≥ 0, (2)

whereβ is a channel parameter related to the effective number of
discrete scatterers. Lety1,y2, . . . ,y2m beN -dimensional column
vectors, which are independent of each other and normally
distributed with zero means and arbitrary correlation matrix ΣΣΣ
which is defined asΣΣΣi,j = 1 for i = j, andΣΣΣi,j = ρi,j for
i 6= j, where 0 ≤ ρi,j < 1 is the correlation coefficient and
1 ≤ i, j ≤ N . Here we assume that all vectors have the same
correlation matrixΣΣΣ.

Now, let x1,x2, . . . ,xN be 2m-dimensional column vectors,
with xn composed of then-th components of theyi and the
norm of xn beingrn, i.e., rn , ||xn||. Then,ri is a Nakagami-
m RV. We recall that the joint PDF ofN Nakagami-m RVs,
rrr , [r1, r2, . . . , rN ], with arbitrary correlation and identically
distributed is given by [10, Eq. (2)] [12, Eq. (9)], as follows

frrr (rrr) =
|WWW |m2Nrm−1

1 rmN
ΩN+m−1Γ (m)

e−
pN,Nr2

N
Ω

N−1∏

n=1

[

|pn,n+1|1−m
rn

× e−
pn,nr2n

Ω Im−1

(
2 |pn,n+1|

Ω
rnrn+1

)]

, (3)

whereWWW denotes the inverse ofΣΣΣ with elementspi,j , andIv(·)
is the modified Bessel function of the first kind with orderv [15,
Eq. (8.406)].

Remark. Note that, although the parameter2m seems to be
restricted as a positive integer,(3) can be used for any positive
values ofm not less than1/2. This is because it satisfies the
necessary and sufficient conditions to be a joint distribution
function, as it was emphasized in [10].

The joint PDF expression (3) requires the matrixWWW to have the
tridiagonal property. However, in the general case, the inverse of
ΣΣΣ is not a tridiagonal matrix. Therefore, we need to approximate
ΣΣΣ with a Green’s matrixCCC [13], which has the form

CCC =








ζ1ϑ1 ζ1ϑ2 . . . ζ1ϑN

ζ1ϑ2 ζ2ϑ2 . . . ζ2ϑN

...
...

. . . . . .
ζ1ϑN ζ2ϑN . . . ζNϑN







, (4)

where ζi and ϑi, are two sequences of real numbers. In order
to determineCCC, nonlinear methods (e.g., Levenberg Marquardt,
quasi Newton, and conjugate gradient) may be used to solve the

equationCCC = ΣΣΣ, i.e., ζiϑi = ΣΣΣi,i = 1 and ζiϑj = ΣΣΣi,j = ρi,j .
The accuracy of the Green’s matrix approximation techniquewill
be verified in Section V. In any case, its computational com-
plexity, determined by the dimension of the correlation matrix, is
given byO(N2).

B. Multivariate Gamma Distribution with Arbitrary Correlation

It is well known that a Nakagami-m RV is the square root
of a Gamma RV. Furthermore, it has been numerically validated
in [14] that the correlation coefficients of Gamma RVs can be
taken identical to the corresponding coefficients of Nakagami-
m RVs with satisfactory accuracy. PerformingN RV trans-
formations onto (3), the joint PDF of multiple Gamma RVs,
ωωω , [ω1, ω2, . . . , ωN ] with ωi = r2i = ||xi||2 for i = 1, . . . , N ,
can be expressed as

fωωω (ωωω) =
|WWW |me

−
N∑

n=1

pn,nωn
Ω

Γ (m)

∞∑

i1,··· ,iN−1=0

ωm+i1−1
1 ω

m+iN−1−1
N

× Ω
−Nm−2

N−1∑

j=1

ij
N−1∏

n=1

N−1∏

j=2

ω
m+ij−1+ij−1
j

N−1∏

n=1

[

|pn,n+1|2in
in!Γ (m+ in)

]

. (5)

To derive (5), we have used the infinite series representations
of Iv(·) [15, Eq. (8.445.1)]. For the special case of exponential
correlation, where the correlation matrix is defined asΣΣΣi,j = 1
for i = j andΣΣΣi,j = ρ|i−j| for i 6= j, (5) reduces to [5, Eq. (2)].

C. MultivariateΓΓ Distribution with Arbitrary Correlation

The multivariateΓΓ distribution can be derived from the
product of two multivariate Gamma RVs. Let us assume that
the Gamma RVs in one multivariate Gamma distribution are
correlated but they are independent from the Gamma RVs of the
other multivariate Gamma distribution.1 Moreover, letu and ω
be two independent Gamma RVs with PDFsfu(u) and fω(ω),
respectively. TheΓΓ RV is denoted byz = uω.

Theorem 1. The joint PDF of the multivariateΓΓ distribution
with arbitrary correlation is given by

fzzz (zzz) =
2N |WWW |m

[Γ (β)]NΓ (m)

∞∑

i1,...,iN−1=0

(
β

Ω

)N(m+β)
2 +

N−1∑

j=1

ij N∏

j=1

z
µj

j

p
ηj

j,j

×K2ηj

(

2

√

βpj,j
Ω

zj

)
N−1∏

n=1

[

|pn,n+1|2in
in!Γ (m+ in)

]

, (6)

whereµj ,
m+αj+β

2 − 1, ηj ,
m+αj−β

2 with αj = ij for j = 1,
αj = iN−1 for j = N , andαj = ij−1+ij for j = 2, 3, . . . , N−1.
Also, Kv(·) denotes the modified Bessel function of the second
kind with orderv [15, Eq. (8.407.1)].

Proof: The multivariateΓΓ distribution can be obtained as

fzzz (zzz) =

∫ ∞

0

. . .

∫ ∞

0

N∏

n=1

ω−1
n fun

(
zn
ωn

)

fωωω (ωωω) dωωω, (7)

wherezzz , [z1, z2, . . . , zN ], with zn = unωn. Moreover,fun
(·) is

the PDF ofun following a Gamma distribution with parameterβ

1This assumption is reasonable, since in most practical wireless channels the
effects of fast fading and shadowing are usually independent from each other.
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given in (2), whileuuu , [u1, u2, . . . , uN ] is a vector containingN
independent and identically distributed (i.i.d.) Gamma-distributed
RVs with the same parameterβ. By substituting (2) and (5) into
(7) and using [15, Eq. (3.471.9)], (6) can be derived.

To the best of the authors’ knowledge, (6) is new and has not
been presented in previous literature. Although (6) is given in
terms of infinite series, only a finite number of terms is needed
to get a satisfactory accuracy (e.g., smaller than10−6) for all
considered cases (a detailed discussion is provided in Section V).

Corollary 1. The joint CDF of the multivariateΓΓ distribution
zzz with arbitrary correlation is given by

Fzzz (zzz) =
|WWW |m

[Γ (β)]
N
Γ (m)

∞∑

i1,...,iN−1=0

N∏

j=1

p
−m−αj

j,j

×G2,1
1,3

[
βpj,j
Ω

zj

∣
∣
∣
∣

1
m+αj, β, 0

]N−1∏

n=1

[

|pn,n+1|2in
in!Γ (m+in)

]

, (8)

whereG[·] is a Meijer’s-G function [15, Eq. (9.301)].

Proof: We start with the definition of the CDF as

Fzzz (zzz) =
2N |WWW |m

[Γ (β)]
N
Γ (m)

∞∑

i1,··· ,iN−1=0

(
β

Ω

)N(m+β)
2 +

N−1∑

j=1

ij

×
N−1∏

n=1

[

|pj,j+1|2ij
in!Γ (m+ in)

]
N∏

j=1

∫ zj

0

z
µj

j

p
ηj

j,j

K2ηj

(

2

√

βpj,j
Ω

zj

)

dzzz.

By transforming the Bessel functionKv (·) into a Meijer’s-G
function through [16, Eq. (14)] and using [16, Eq. (26)], we can
conclude the proof with [15, Eq. (9.31.5)].

Note that for (m + αj − β) /∈ Z and by using [17, Eq.
(07.34.26.0004.01)], (8) can be written in terms of the more
familiar generalized hypergeometric function1F2 (·) as

Fzzz (zzz) =
|WWW |m

[Γ (β)]
N
Γ (m)

∞∑

i1,··· ,iN−1=0

N−1∏

n=1

[

|pn,n+1|2in
in!Γ (m+in)

]

×
N∏

j=1

p
−m−αj

j,j

(

Γ (β−m−αj)

m+αj

(
βpj,j
Ω

zj

)m+αj

× 1F2

(

m+αj; 1−β+m+αj, 1+m+αj;
βpj,j
Ω

zj

)

+
Γ (m+αj−β)

β
(

βpj,j

Ω zj

)−β 1F2

(

β; 1−m−αj+β, 1+β;
βpj,j
Ω

zj

))

.

Corollary 2. The joint MGF of theΓΓ distribution zzz with
arbitrary correlation matrix is given by

Mzzz (sss) =
|WWW |m

[Γ (β)]
N
Γ (m)

∞∑

i1,...,iN−1=0

N∏

j=1

p
−m−αj

j,j

×G2,1
1,2

[
βpj,j
Ωsj

∣
∣
∣
∣

1
m+ αj , β

]N−1∏

n=1

[

|pn,n+1|2in
in!Γ (m+ in)

]

, (9)

wheresss , [s1, s2, . . . , sN ].

Proof: Based on the PDF expression (6), the joint MGF of

the multivariateΓΓ distribution is given by

Mzzz (sss) =

∫ ∞

0

. . .

∫ ∞

0

exp

(

−
N∑

n=1

snzn

)

fzzz (zzz) dzzz. (10)

Following a similar procedure as in deriving (8), we simply
express the exponential function in terms of a Meijer’s-G function
[16, Eq. (11)] and utilize the relation [16, Eq. (21)]. Then,the
joint MGF expression in (9) is derived.

D. Special Cases

Now we present some PDF and CDF expressions for special
cases, e.g., bivariate arbitrarily correlated or exponentially corre-
latedΓΓ RVs. Note that these expressions give the link to previous
results and prove the correctness of our generalized formulas. For
bivariate correlatedΓΓ RVs, wherezzz = [z1, z2], the joint PDF
and CDF reduce to [2, Eq. (4)] and [2, Eq. (10)], respectively.
For the special case of the exponentially correlated multivariate
ΓΓ distribution, (6) simplifies to [5, Eq. (5)]. Furthermore, when
we consider independentΓΓ RVs, the joint PDF, CDF and
MGF simplify to the product of multivariate independentΓΓ
distributions [11, Eqs. (2), (3) and (4)], respectively. Wefinally
point out that for exponentially correlated multivariateΓΓ RVs,
the joint CDF formula (8) reduces to [5, Eq. (7)] and the joint
MGF expression (9) reduces to [5, Eq. (10)].

III. SUM OF ΓΓ RVS WITH ARBITRARY CORRELATION

A. PDF and CDF of the Sum ofΓΓ RVs

The sum ofN ΓΓ RVs is defined as

S ,

N∑

n=1

zn =
N∑

n=1

unωn, (11)

whereun are i.i.d. Gamma RVs with parameters(β, 1/β) whose
PDF expression was given in (2), andωn are non-identical and
correlated Gamma RVs with parameters(mn,Ωn) and joint PDF
given in[18, Eq. (11)]. According to the approach presentedin
[6], we can rewrite (11) as

S=
1

N

N∑

n=1

un

N∑

n=1

ωn

︸ ︷︷ ︸

Ŝ

+
1

N

N−1∑

i=1

N∑

j=i+1

(ui−uj) (ωi−ωj)

︸ ︷︷ ︸

ε

, (12)

where Ŝ is the approximation of the sum andε is the approxi-
mation error, respectively. The validity of this approximation has
been investigated by Kolmogorov-Smirnov (KS) goodness-of-fit
statistical test in [6]. Then,̂S can be expressed as the product of

two sums of Gamma RVs, i.e.̂S = S1S2, whereS1 , 1
N

N∑

n=1
un

andS2 ,
N∑

n=1
ωn. It is well known that the sum of i.i.d. Gamma

RVs un remains Gamma distributed with parameters(Nβ, 1/β)
[19, Eq. (7)]. After variate transformation, we can conjecture that
S1 is Gamma distributed with parameters(Nβ, 1/Nβ).

Following the similar method presented in [18], letδn be the
set of N distinct eigenvalues of theN × N covariance matrix
given byKy = E(yy†), where

E(yi,kyj,l) =







Ωi/2, if i=j andk= l

ρi,j
√

ΩiΩj/2, if i 6=j andk= l

0, otherwise.
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We assume thatδn has algebraic multiplicityνn, whereνn/2 ∈
Z. Then, we can derive a closed-form PDF expression forS2 as

fS2 (z) =

N∑

i=1

mi∑

j=1

ΞN

(
i, j, {mn}Nn=1, {Ωn}Nn=1

)
fu (z; j,Ωi) ,

wherefu (z; j,Ωi) is given in (5),mn = νn/2 should be integers,
Ωn = 4δn/νn, and

ΞN

(
i,mi−k, {mn}Nn=1, {Ωn}Nn=1

)
=

1

k

N∑

j,n=1
n6=i

mn

Ωj
n

(
1

Ωi
− 1

Ωn

)−j

× ΞN

(
i,mi − k + j, {mn}Nn=1, {Ωn}Nn=1

)
, (13)

with k = 1, . . . ,mi − 1 and

ΞN

(
i,mi, {mn}Nn=1, {Ωn}Nn=1

)
=

Ωmi

i
∏N

t=1 Ω
mt

t

N∏

j 6=i

(
1

Ωj
− 1

Ωi

)−mj

.

With the PDF expressions ofS1 andS2, we can derive the PDF
of Ŝ as2

fŜ (z) =

N∑

i=1

mi∑

j=1

ΞN

(
i, j, {mn}Nn=1, {Ωn}Nn=1

)
fγ (z;Nβ, j, jΩi) ,

(14)

wherefγ(·) is the PDF of aΓΓ RV and is given by [11, Eq. (2)]

fγ (z;Nβ, j, jΩi) =
2(Nβ)

Nβ+j
2 z

Nβ+j
2 −1

Γ (j) Γ (Nβ) (Ωi)
Nβ+j

2

KNβ−j

(

2

√

Nβz

Ωi

)

.

(15)

Finally, the corresponding CDF is given by

FŜ (z) =

N∑

i=1

mi∑

j=1

ΞN

(
i, j, {mn}Nn=1, {Ωn}Nn=1

) 1

Γ (j) Γ (Nβ)

×G2,1
1,3

[
Nβ

Ωi
z

∣
∣
∣
∣

1
Nβ, j, 0

]

. (16)

Note that the approximating PDF and CDF expressions (14) and
(16) are both in analytical form, since they involve finite nested
summations. The weights coefficients can be easily and quickly
evaluated by using the recursive formula (13).

B. Approximation Accuracy

In order to evaluate the accuracy of our approximating result,
the simulated and analytical (16) CDF curves of the sum of
exponentially correlatedΓΓ RVs are plotted in Fig. 1. Note
that the analytical CDF expression can be only obtained by
calculating the eigenvalues and algebraic multiplicity for each
specific covariance matrix. From Fig. 1, it is clear that the
analytical results approximate the exact ones with good accuracy.
Moreover, note that the accuracy of the analytical CDF expression
depends on the values of parametersρ, N , β, mn, andΩn. As a
general comment, higher values ofN and smaller values ofΩn

yield better accuracy.
Furthermore, we use a KS goodness-of-fit statistical test to

validate the accuracy of the approximation results. The KS test

2Since the PDF expression involves the distinct eigenvaluesof the covariance
matrix Ky, it is not straightforward to derive similar expressions for the case of
exponentially correlatedΓΓ RVs. Yet, the authors in [6] have given the PDF and
CDF expressions for the case of independentΓΓ RVs.
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N = 2, m1 =m2 = 1,Ω1 = Ω2 = 1
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Approximation
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N = 2, m1 =m2 = 1,
Ω1 = Ω2 = 1

Fig. 1. Analytical and simulated CDF of the sum ofΓΓ RVs (ρ = 0.1 and
β = 1).

statistic T is defined as the maximal difference between the
simulated and approximate CDFs. The critical valueTmax is given

asTmax ≈
√

− 1
2v ln

α
2 , whereα = 5% is the significance level

andv = 104 is the number of random samples of RVs [20]. Then,
Tmax = 0.0136. The hypothesisH0 is not always accepted with
95% significance and the accuracy of the proposed approximation
depends on the combinations of the parametersρ, mn, Ωn,
β and N . For example, the hypothesisH0 is accepted with
T = 0.0118 < Tmax when considering exponential correlation
with the following typical values,m1 = m2 = 1, Ω1 = Ω2 = 1,
β = 1, ρ = 0.5, andN = 2. However, when we setρ = 0.1 and
keep other parameters the same, the hypothesisH0 is rejected
with T = 0.0198 > Tmax.

IV. A PPLICATIONS IN WIRELESSCOMMUNICATIONS

A. Diversity Receivers

In this section, the performance of various classes of multi-
channel diversity receivers, operating over arbitrarily correlated
generalized-K fading channels, is analyzed in terms of OP and
BER. For each receive antenna, the transmitted signal is passing
through the fading channel and perturbed by complex additive
white Gaussian noise (AWGN) with zero mean and varianceN0.
The instantaneous signal-to-noise ratio (SNR) of the baseband
received symbol in thenth diversity branch is given byλn =
|hn|2Es/N0, whereEs is the energy of the transmitted complex
symbol andhn is the complex gain of thenth generalized-
K fading channel. By assuming that each fading channel has
identical parameters, the average SNR per branch is the same
and can be expressed asλ̄n = E

(

|hn|2
)

Es/N0 = λ̄, where

E
(

|hn|2
)

= mΩ. Furthermore, since shadowing occurs in large
geographical areas, we assume that the shadowing parameters on
each antenna are same, i.e.,βn = β, and the AWGN is uncorre-
lated among the diversity channels [21]. Withλn = |hn|2λ̄/mΩ,
the joint PDF and CDF ofλλλ , [λ1, λ2, . . . , λN ] can be ob-
tained asfλλλ (λλλ) = fzzz

(
mΩ
λ̄
λ1,

mΩ
λ̄
λ2 . . . ,

mΩ
λ̄
λN

)
/
(
λ̄/mΩ

)N

andFλλλ (λλλ) = Fzzz

(
mΩλ1

λ̄
,mΩλ2

λ̄
, . . . ,mΩλN

λ̄

)
, respectively.

1) Selection Combining:The output SNR of SC diversity
receivers is the highest instantaneous SNR among the multiple
branches, i.e.,λsc = max{λ1, λ2, . . . , λN}. An outage event
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happens when the SNRs of all branches fall below a given
thresholdλth. From (8), the OP is obtained as

Pout(λth) =
|WWW |m

[Γ (β)]
N
Γ (m)

∞∑

i1,...,iN−1=0

N−1∏

n=1

[

|pn,n+1|2in
in!Γ (m+in)

]

×G2,1
1,3

[
βmpj,jλth

λ̄

∣
∣
∣
∣

1
m+αj, β, 0

] N∏

j=1

p
−m−αj

j,j . (17)

The OP for small values ofλth is typically interesting in
communication systems. We now focus on the high-SNR regime.
Based on [15, Eq. (9.303)] and [17, Eq. (07.22.02.0001.01)], the
high-SNR outage can be derived from (17) and for(m+αj−β) /∈
Z as

P∞
out(λth) =

|WWW |m

[Γ (β)]
N
Γ (m)

∞∑

i1,...,iN−1=0

N∏

j=1

p
−m−αj

j,j

Γ (tj − τj)

τj

×
(

βmpj,j
λth

λ̄

)τj N−1∏

n=1

[

|pn,n+1|2in
in!Γ (m+in)

]

+o



λth

N∑

j=1

τj



 , (18)

where τj , min(m + αj , β) and tj , max(m + αj , β). (18)
indicates that using more antennas at the receiver affects the high-
SNR slope, since the high-SNR slope grows linearly withN .

2) Maximal-Ratio Combining:The MRC receiver can achieve
optimal performance in terms of maximizing the SNR at the
output of the combiner [1]. The instantaneous SNR per symbolof
anN -branch MRC receiver is given byλMRC =

∑N
n=1 λn. Then,

the approximating expression for the OP of MRC receivers is
given by

Pout (λth) ≈
N∑

i=1

mi∑

j=1

ΞN

(
i, j, {mn}Nn=1, {Ωn}Nn=1

)

× Fγ (λth;Nβ, j, jΩi) , (19)

whereFγ(·) is given in (16). For(Nβ − j) /∈ Z, the OP in the
high-SNR regime is given by

P∞
out (λth) =

N∑

i=1

mi∑

j=1

ΞN

(
i, j, {mn}Nn=1, {Ωn}Nn=1

)

× Γ (ej − cj)

cj

(

Nβ
λth

Ωi

)cj

+ o (λth
cj ) , (20)

wherecj , min(Nβ, j) and ej , max(Nβ, j). It is clear that
the diversity order depends on the values of the parametersN , β
andmi. For the case of MRC,mi in (20) should be integer.

We now consider the average BER of the MRC receiver for
noncoherent binary frequency-shift keying (NBFSK). Basedon
[1, Eq. (9.254)], the average BER expression is given asPMRC

b =
0.5MλMRC (g), whereg = 0.5 for NBFSK. Futhermore, the MGF
of the output SNR can be obtained from (9) asMλMRC (sss) =
Mλ (s, s, . . . , s).

Following a similar method of [5], the approximate BER of
MRC receivers for binary phase-shift keying (BPSK) modulation
is given by

PMRC
b ≈ 1

12
MλMRC (1) +

1

4
MλMRC

(
4

3

)

. (21)

The approximate BER (21) provides a very useful metric of
communication systems. Furthermore, (21) can reduce to [5,Eq.
(15)] for exponentially correlated multivariateΓΓ RVs.

For the BER of BPSK in the high-SNR regime, we invoke the
seminal parametrization in terms of diversity orderGd and coding
gainGc. By keeping only the dominant term of (21), the BER of
MRC receivers over arbitrarily correlated generalized-K fading
channels is given by

PMRC,∞
b = (Gc × Ω)

−Gd + o
(
Ω−Gd

)
, (22)

where

Gd ,

N∑

j=1

τj (23)

Gc ,

(

|WWW |m

4 [Γ (β)]
N
Γ (m)

∞∑

i1,...,iN−1=0

N∏

j=1

p
−m−αj

j,j Γ (tj−τj) Γ (τj)

×
(
3βpj,j

4

)τj N−1∏

n=1

[

|pn,n+1|2in
in!Γ (m+ in)

])−1
τj

. (24)

Based on the aforementioned expressions, we can notice that
the diversity order does not depend on the correlation between
fading channels, but depends on the shape parameter of small-
scale fading and scale parameter of Gamma shadowing. Note
that, for large values ofβ, the diversity orderGd is limited by
the shape parameter of small-scale fading.

B. Free-Space Optical Communications

We consider a diversity FSO system withN apertures and
one beam, where the underlying sub-channels between pairs of
transmit-receive apertures are correlated. Furthermore,we assume
that the optimal combining (OC)3 scheme is deployed. LetPn be
the fading coefficient of then-th sub-channel,n = 1, 2, . . . , N ,
that follows theΓΓ distribution with arbitrary correlation. The
instantaneous electrical SNR at then-th receive aperture can be
defined asλn = (ηPn)

2/N0 and the average electrical SNR
is λ̄n = |ηE(Pn)|2/N0, where η is the optical-to-electrical
conversion coefficient. Without loss of generality, we normalize
the average irradiance as E(Pn) = 1 and assume that the average
electrical SNRs at different receive apertures are equal, i.e.,
λ̄n = λ̄. The variance of the noise in each receiver isN0/2N
and the average BER is defined as [22, Eq. (17)]

POC
b =

∫ ∞

0

· · ·
∫ ∞

0

Q




η√

2NN0

√
√
√
√

N∑

n=1

P 2
n



 fppp (ppp) dppp, (25)

whereQ(·) denotes the GaussianQ-function [1, Eq. (4.1)],ppp ,

[P1, P2, . . . , PN ], and fppp (ppp) is the joint PDF of the vectorppp
obtained with the aid of (6).

In strong atmospheric channels, the fading parametersβ and
m can be respectively expressed as [8, Eqs. (5)-(6)]

β =




exp






0.49σ2
2

(

1 + 0.18d2 + 0.56σ
12/5
2

)7/6




− 1






−1

, (26)

m =




exp






0.51σ2
2

(

1 + 0.69σ
12/5
2

)−5/6

(

1 + 0.9d2 + 0.62d2σ
12/5
2

)5/6




− 1






−1

, (27)

3In FSO communications, the term OC is used instead of MRC.
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Fig. 2. Analytical, simulated and high-SNR approximation OP of SC diversity
receivers with three branches over exponentially correlated generalized-K fading
channels against the inverse normalized outage thresholdλ̄/λth (ρ = 0.25 and
m = 2).

whereσ2
2 = 0.492C2

nk
7/6L11/6 andd =

√

kD2/4L with L being
the distance between transmitter and receiver,k is the optical
wavenumber,D is the aperture diameter andC2

n = 1.7 × 10−14

is the refractive-index structure parameter.
The integral in (25) is very difficult to be evaluated in closed-

form, so we use a simple and accurate exponential approximation
for Q(·) [5, Eq. (14)] to derive an approximate result. Then, (25)
can be written as

POC
b ≈

∫ ∞

0

· · ·
∫ ∞

0

(

1

12
exp

(

− η2

4NN0

N∑

n=1

P 2
n

)

+
1

4
exp

(

− η2

3NN0

N∑

n=1

P 2
n

))

fppp (ppp) dppp. (28)

Substituting (6) into (28) and using [16, Eqs. (11), (14)] and [16,
Eq. (21)], we derive the average BER as

POC
b ≈ 1

12
Λ

(

m,β,

√

λ̄

4N

)

+
1

4
Λ

(

m,β,

√

λ̄

3N

)

, (29)

where

Λ (m,β, x) ,
2N(m+β−2)|WWW |m

[πΓ (β)]
N
Γ (m)

∞∑

i1,...,iN−1=0

N−1∏

n=1

[

|2pn,n+1|2in
in!Γ (m+in)

]

×
N∏

j=1

p
−m−αj

j,j G1,4
4,1

[(
4xΩ

βpj,j

)2
∣
∣
∣
∣
∣

1−(m+αj)
2 ,

2−(m+αj)
2 , 1−β

2 , 2−β
2

0

]

.

Note that for the special case of exponentially correlated
atmospheric turbulence, (29) coincides with a previously known
expression [5, Eq. (19)].

V. NUMERICAL RESULTS

A. RF Communication Systems

In our simulation, without loss of generality, it is assumed
here thatI1 = I2 = . . . = IN−1 and every branch has the
same average SNR̄λ. For the OP of three branches with SC
receivers, the Monte-Carlo simulation results, analytical results
(17) and high-SNR approximation (18) are compared in Fig.
2. We again assume exponential correlation. The shadowing
parameterβ corresponds to1.0931, 7.9115 and 75.1155 for
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Fig. 3. Average BER of triple SC diversity receivers over linearly correlated
generalized-K fading channels against the average SNR per branchλ̄.
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Fig. 4. OP of MRC diversity receivers over exponentially correlated generalized-
K fading channels against the inverse normalized outage thresholdλ̄/λth (β = 1,
mn = m = 1).

frequent heavy shadowing, Karasawa shadowing and infrequent
light shadowing, respectively [5]. It is clear that for exponentially
correlated generalized-K fading channels, the analytical results
agree closely with the exact OP results obtained via simulations.
Furthermore, the high-SNR approximations are sufficientlytight
and become exact, even at moderate SNR values. As expected, the
OP that corresponds to light shadowing (β = 75.1155) is larger
than the OP that corresponds to heavy shadowing (β = 1.0931).
Moreover, this trend is more pronounced for smaller values of β.

Figure 3 presents the simulated, analytical (21) and high-
SNR asymptotic results (22) for the BER of triple SC diversity
receivers over linearly correlated generalized-K fading channels.
The linearly correlated model is a more general case than theex-
ponential one with a correlation Toeplitz structure matrixdefined
asΣΣΣi,j = 1 for i = j andΣΣΣi,j = ΣΣΣj,i = ρi,j for i 6= j. We note
that as the scale and shadowing coefficients increase, the average
BER decreases. For all scenarios, the analytical results agree with
the Monte-Carlo ones. Likewise, the diversity order and coding
gains are accurately predicted. It is clear that the diversity order
depends on the shadowing parameters.

The simulated and approximate OP of MRC receivers over
exponentially correlated generalized-K fading channels are inves-
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Fig. 5. Bit error rate of quadruple branch MRC diversity receivers over
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per branch̄λ (m = 2, ρ = 0.3).
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Fig. 6. Average BER of space diversity FSO system with three apertures and
one beam over strong turbulence fading channels against theaverage electrical
SNR λ̄.

tigated in Fig. 4. It is obvious that the proposed approximation is
a lower bound of the simulated results. However, the difference is
not greater than 2 dB in all cases. Furthermore, the approximation
results are more accurate with the increased correlation coefficient
ρ and the decreased value ofN .

We present the simulated and approximate BER perfor-
mance of quadruple MRC receivers over exponentially correlated
generalized-K fading channels in Fig. 5. It is clear that the BER
decreases asβ increases. Approximate BER curves are close
to the simulated results and can be used as an upper bound.
Moreover, the gap between two curves becomes smaller as the
SNR increasing.

B. FSO Systems

In Fig. 6, the simulated and approximate (29) error performance
of space diversity FSO links withN = 3 receive apertures
employing OC over exponentially correlated atmospheric turbu-
lence channels, is depicted. We consider the case of the optical
wavenumberk = 0.405 × 107, link distancesL = 3000, 5000m

and correlated coefficientsρ = 0.2, 0.5, 0.7, respectively. Upon
using (26) and (27), the respective values forβ andm can be
determined. From Fig. 6, it is clear that the approximate results
of cases under consideration closely agree with the ones obtained
via Monte-Carlo simulations. Note that the average BER increases
by increasingρ andL or decreasinḡλ.
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