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N Abstract—The statistical properties of the multivariate Gamma-

Gamma (['T) distribution with arbitrary correlation have remained
unknown. In this paper, we provide analytical expressionsdr the
joint probability density function (PDF), cumulative distribution
function (CDF) and moment generation function of the multivariate
T'T distribution with arbitrary correlation. Furthermore, we present
novel approximating expressions for the PDF and CDF of the sm
of I'T random variables with arbitrary correlation. Based on this
statistical analysis, we investigate the performance of o frequency
and optical wireless communication systems. It is notewohly that
'I_ 'the presented expressions include several previous ressilin the
literature as special cases.
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Index Terms—Diversity receivers, free-space optical communica-

() tions, multivariate T'T" distribution.
[ S

squared generalizeR- distribution and includes the squaréd
distribution and double-Rayleigh distribution as speaabes.

In radio frequency (RF) communications, the performance of
diversity systems ovefT" fading channels has been analyzed in
[5], [6]. In particular, [5] investigated the outage probiy (OP)

of selection combining (SC) receivers, as well as the aeehig
error rate (BER) of maximal ratio combining (MRC) receivers
operating over exponentially correlated distributed rfigdchan-
nels. Furthermore, a simple approximation for the distridyuof

the sum of independent distributéd” random variables (RVS)
was provided in[[6]. However, all these works are based on the
assumption of independent or exponentially correldi€dRVs.
Furthermore, th&€T distribution has been used in the performance
investigation of free-space optical (FSO) links over atphesic

. . INTRODUCTION turbulence conditions[ [6]=[9]. These previous results aot
L(>) In practical wireless communications, the electromagmsitj- theoretically attractive when the underlying FSO links ac

nal experiences composite small-scale fading and shadowindependently distributed. To the best of the authors’ Kedge,
simultaneously. Over the past decades, several works lmve & statistical analysis othe multivariate I'T" distribution with

(O cused on the performance analysis of wireless systems ogdpitrary correlationis still not available in the literature.

O composite fading channel§][1].1[3].1[4]. On a different note Motivated by the above discussion, this paper makes the
= diversity techniques are widely used to reduce the effets following specific contributions:

g multipath fading. If the antennas are sufficiently sepataieis
reasonable to assume that signals received by differeahnas
are independent. However, this assumption is intimatelgeifor

-« systems with closely spaced antennas, such as mobile pHanes

2 general, correlation between channels results in a detipadaf

>< the diversity gain. Therefore, it is important to quantifyarously

=~ the effects of correlation in real-life practical scenario

© Recently, the Gamma-GammaBI{) distribution has been pro-
posed as a general and mathematically tractable compaslitegf
model [2], [5], [6]. The I'T distribution is equivalent to the
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« Using the Green’s matrix approximation [10], we derived
new analytical expressions for the probability densitycfun
tion (PDF), cumulative distribution function (CDF) and mo-
ment generation function (MGF) of the joiRfl" distribution

with arbitrary correlation. We point out that the presemned
sults encompass several previously known results as $pecia
cases (e.g., those inl[2],1[5],.[11]).

Efficient approximations to the PDF and CDF of the sum of
arbitrarily correlated’T" RVs are derived for integer values

of fading severitym. The resulting expressions can be easily
and quickly evaluated by using a recursive formula.
Furthermore, in order to reveal the importance of the
proposed statistical formulations, we study the perfor-
mance of SC and MRC receivers over arbitrarily correlated
generalizedX fading channels.

Finally, in the context of FSO communication systems with
spatial diversity, we analyze the BER performance when
strong turbulence channels is assumed. The derived expres-
sion extends the results on independent and exponentially
correlatedl'T' fading channels in_[5].

Notations We use upper and lower case boldface to denote
matrices and vectors, respectively. The expectation isrghy
E(-). The norm of a vector is given b} - ||, while the matrix
determinant by - |. The Hermitian operation is defined &s'.

The set of integer numbers is expressed ZigFinally, let X; ;
denote the(i, j)-th element of the matri¥X.
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II. MULTIVARIATE DISTRIBUTION WITH ARBITRARY equationC = X, i.e., (;v; = X;; = 1 and 9, = 8;; = pi ;.

CORRELATION The accuracy of the Green’s matrix approximation technigilie
A. Multivariate Nakagami= Distribution with Arbitrary Corre- D€ Verified in Sectiofi V. In any case, its computational com-
lation plexity, determined by the dimension of the correlationnmats

. o given by O(N?).
Let r be a Nakagamin RV, whose PDF is given by [10]

2m—1 2
fr(r) = 1“2(T Ie exp <_T_> . >0, (1) B. Multivariate Gamma Distribution with Arbitrary Corretan
m) Qm -

It is well known that a Nakagamk RV is the square root
whereI'(-) represents the Gamma functidn [15, Eq. (8.310.14f a Gamma RV. Furthermore, it has been numerically valiiate
Q £ E(r?)/m with E(r?) being the average power, and> 1/2 in [14] that the correlation coefficients of Gamma RVs can be
denotes the fading severity. Note that (1) is another remteion taken identical to the corresponding coefficients of Nakaiga
of the classical formula for the single NakagamiPDF. Without ;, Rvs with satisfactory accuracy. Performiny RV trans-
loss of generality, letu be a Gamma RV which representgormations onto [(8), the joint PDF of multiple Gamma RVs,

shadowing and it is assumed in the following thau® = 1. 2 [, w,, ..., wy] With w; = r2 = ||x;||? fori =1,...,N,
Then, the PDF of: can be expressed &g [7] can be expressed as
B N
,fu (U) = ﬁ Uﬁ—le_ﬁu7 U,B Z O, (2) W m = 21 Pn,g n -

r (B) fw (l.u') _ | | e "= Z w;ﬂﬂ-il—lwx"”iN—l*l
whereg is a channel parameter related to the effective number of L' (m) R S—
discrete scat_terers. Lgﬁ, y2,...,¥Y2m be N-dimensional column o 1\51__ N N1 N1 2
vectors, which are independent of each other and normally, = oMt H [Prmti | . (5)
distributed with zero means and arbitrary correlation irak ol jo3 J S il (m +iy)

which is defined asl; ; = 1 for ¢ = j, andX;; = p;; for
i # j, where0 < p;; < 1 is the correlation coefficient an
1 <i,57 < N. Here we assume that all vectors have the sa
correlation matrixz.

Now, let x1,xo,...,xx5 be 2m-dimensional column vectors,
with x,, composed of the:-th components of the;; and the
norm of x,, beingr,, i.e.,r, = ||x,||. Then,r; is a Nakagami- C. Multivariate I'T Distribution with Arbitrary Correlation
m RV. We recall that the joint PDF oV Nakagamim RVS, — 1ne myivariate T distribution can be derived from the

A . . . . .
r = [r1,72,...,7n], with arbitrary correlation and identically ,q,ct of two multivariate Gamma RVs. Let us assume that
distributed is given by([10, Eq. (2)[[12, Eq. (9)], as follew the Gamma RVs in one multivariate Gamma distribution are

gTo derive [5), we have used the infinite series representatio
rﬂfe I,(-) [15, Eq. (8.445.1)]. For the special case of exponential
correlation, where the correlation matrix is defineddas = 1
fori = j andX%; ; = pl"=Jl for i # j, (B) reduces td [5, Eq. (2)].

moN, m—1,_m 2 V-1 correlated but they are independent from the Gamma RVs of the
(W28 _enenrR 1-m e S,
fr(r) = SONFL () ¢ @ H 2 R other multivariate Gamma distributi@hMoreover, letu and w
n=1 be two independent Gamma RVs with PDFgw) and f,,(w),
nonrl 2 |pnm respectively. Tha'T' RV is denoted by = uw.
XeipTIm— ( |p : +1| nrn+l) ) (3) P Y ¥
Q Theorem 1. The joint PDF of the multivariatd'T" distribution
whereW denotes the inverse & with elementsp; ;, andZ,(-) With arbitrary correlation is given by
is the modified Bessel function of the first kind with ordefl5, N m . N(m+5)+Ni1i_ N
2 - J -
Eq. (8.406)]. fo(z) = —2 W] > s S
T (BN (m) 4 Q L
Remark. Note that, although the paramet&m seems to be 10N —1=0 J=1777
restricted as a positive integef3) can be used fo_r any p95|t|ve Bpi; N-1 . +1|2Zn
values ofm not less thanl /2. This is because it satisfies the X Kan; | 2 Q 4 H i (m+in) | (6)
necessary and sufficient conditions to be a joint distrinuti n=1 L "
function, as it was emphasized in [10]. wherey; £ m+c;j+ﬁ — 1, m+c;rﬁ with a; = 4, for j =1,

The joint PDF expressiofil(3) requires the mai#iixto have the @ = in—1forj = N,anda; =i 1 +i;forj =2,3,..., N—1.
tridiagonal property. However, in the general case, thers® of Also, I_(v(-) denotes the modified Bessel function of the second
¥ is not a tridiagonal matrix. Therefore, we need to approxémakind with orderv [15, Eq. (8.407.1)].

¥ with a Green’s matrixC' [13], which has the form Proof: The multivariatel'T' distribution can be obtained as
QY1 QY2 ... QYN oo s N .
Gy (e ... (GOn f2(2) = / .. / w;lfun (_n) Jo W) dw, (7)
= : : . ) 4) ( 0 0 711;[1 \Wn (
411.91\, @{9]\, . Q;,.ﬁ'N wherez £ [z, 29, . .., zn], With 2,, = u,w,. Moreover,f,, (-) is

where (; and ¢;, are two sequences of real numbers. In ordgge PDF ofu,, following a Gamma distribution with parametgr

to de_termlneC, non“near methods_(e.g., Levenberg Marquardt, iyp;g assumption is reasonable, since in most practicallesisechannels the
guasi Newton, and conjugate gradient) may be used to sobre #hiects of fast fading and shadowing are usually indepenttem each other.



given in (2), whilew £ [u1, us, ..., uy] iS a vector containingv  the multivariatel'T" distribution is given by

independent and identically distributed (i.i.d.) Gamnistributed oo 0o N

RVs with the same parametér By substituting[(R) and{5) into M, (s) = / .. / exp (— Z snzn> fz(2)dz.  (10)
(@ and using[[15, Eq. (3.471.9)[1(6) can be derived. [ ] 0 0 =

FoIIowing a similar procedure as in deriving] (8), we simply

xpress the exponential function in terms of a Meij&r'$unction
élG Eq. (11)] and utilize the relation [16, Eq. (21)]. Thehe
joint MGF expression in[{9) is derived. ]

To the best of the authors’ knowledgEl] (6) is new and has no
been presented in previous literature. Althoufgth (6) is iue
terms of infinite series, only a finite number of terms is neled
to get a satisfactory accuracy (e.g., smaller than®) for all
considered cases (a detailed discussion is provided inoB&d).

D. Special Cases

Corollary 1. The joint CDF of the multivariat&'T" distribution Now we present some PDF and CDF expressions for special

z with arbitrary correlation is given by cases, e.g., bivariate arbitrarily correlated or expaaéintcorre-
. latedT'T" RVs. Note that these expressions give the link to previous

F,(2) = L4 Z Hp—m—aj results and prove the correctness of our generalized fasn&br

T (8)"T (m),, o —ojmr bivariate correlated’T" RVs, wherez = [z1, 22, the joint PDF

and CDF reduce td_[2, Eq. (4)] and! [2, Eq. (10)], respectively
8) For the special case of the exponentially correlated naritite
I'T distribution, [6) simplifies to[[5, Eq. (5)]. Furthermorehan
we consider independeril’ RVs, the joint PDF, CDF and
MGF simplify to the product of multivariate independenf’
distributions [11, Eqgs. (2), (3) and (4)], respectively. Vifgally
point out that for exponentially correlated multivaridte' RVs,
N oo m - N(m+5)+1\§ i the joint CDF formula[{(B) reduces t0][5, Eq. (7)] and the joint
F.(z) = 27 |W] Z (ﬁ = MGF expression[{9) reduces to [5, Eq. (10)].
r (ﬁ)]NF (m) ; Q@

2,1 ﬂpj.,j
o [

N—1 2,
1 H |pn n+1|
m+a;, 5,0 | 1L il (mtidy) |
whereG]-] is a Meijer'sG function [15, Eq. (9.301)].

Proof: We start with the definition of the CDF as

<, iN—1=0

N HJ I1l. Sum OFI'T' RVS WITH ARBITRARY CORRELATION
H/ m " ( ﬂzgj Zj> dz. A. PDF and CDF of the Sum dfl' RVs
The sum of N I'T" RVs is defined as

N-1
% H |ng+1|
ot i (m + iy)

By transforming the Bessel functiok, (-) into a Meijer'sG N
function through[[15, Eq. (14)] and using |16, Eq. (26)], wanc SEY 2, Zunwna (11)
conclude the proof with [15, Eq. (9.31.5)]. ] n=1

whereu,, are i.i.d. Gamma RVs with parametdrs 1/3) whose
IPDF expression was given ial(2), angl are non-identical and
correlated Gamma RVs with parametérs,,, €2,,) and joint PDF
given in[18, Eq. (11)]. According to the approach preserited
[6], we can rewrite[IZI]l) as

=~ Zun an—i—N Z Z i—w;), (12)

Note that for (m + «; — 8) ¢ Z and by using [[17, Eq.
(07.34.26.0004.01)][18) can be written in terms of the more
familiar generalized hypergeometric functighy, (-) as

o ol
FZ(z)_[rwﬂNr(m) Z HL”T (m+in)

’LN1 =0n=1

N ) o m-+a;
% p;q?_aj r (ﬂ m Ozj) (ﬂpj-ﬂ Zj> 1=1 j=1i+1
=1 mEa; @ $ :
Bpj.i where S is the approximation of the sum andis the approxi-
X 1F [ m+a;1-8+m+a;, 1+m—+a;; 2 . ! . . .
12 ( sil=h J o mation error, respectively. The validity of this approxiioa has

' (m+a;—f)

+ _Bl
(o)

Bp; i been investigated by Kolmogorov-Smirnov (KS) goodnes§tof
Iy (ﬂ; L—m—o;+f, 1+6; g>

statistical test in[[6]. ThenS can be expressed as the product of
N

two sums of Gamma RVs, i.& = S; S5, whereS; £ = Z Up

Corollary 2. The joint MGF of theTT' distribution z with andS; = Z wp. Itis well known that the sum of i.i.d. Gamma

arbitrary correlation matrix is given by RVS u,, remains Gamma distributed with parametéi&s, 1/3)
M, (s) = wi" Z Hp—m @ [19, Eq. (7)]. After variate transformation, we can conjgetthat
LT (m),, S _0jo1 S, is Gamma distributed with parametd¥ 3, 1/N 3).

Following the similar method presented [n [18], t&t be the
9) set of N distinct eigenvalues of thé&V x N covariance matrix
given byK, = E(yy"), where

21 | Bpj;
x G7
1,2 |: QSJ'

1 R [P nt1]
m+ oy, 3 ] };[1 [znlf(m—l—zn) ’
wheres £ [s1, s2,...,sn]. Q;/2, if i=j andk=1
E(y’tkyjl

pi i/ Qi /2, if i£j andk=I

Proof: Based on the PDF expressidd (6), the joint MGF of 0, otherwise.



We assume thal, has algebraic multiplicity,,, wherev,,/2 €

. . 1 : — = o)

Z. Then, we can derive a closed-form PDF expressionstoas P P =
0.9t y ]

N my; =
= (s s N N i 0.8} E
ng (2) = Z Z =N (11.77 {mn}nzla {Qn}nzl)fu (27-77 QZ) ’
i=1 j=1 0.7 . J N=2m=my=1, 4
Q=0=1

wheref, (z; j, ;) is given in [B),m,, = v, /2 should be integers, < 08f & / ¢ 1

Q,, = 46,,/v,, and o5l ) ’ \ i
'S ! 7 N=3m=my=mg=1
N —j $} L I ’ M=Qh=UGB=1 i
1 m 1 1 : 04F
—_ . N N n 4
SN (Zami_ka{mn}n:la{ﬂn}n:l):E Z QJ (Q__Q_) 03k I // N=2m=m=1,0=0%=1 ]
= L 1 4

n#i 02t/ 1

= . . N N / ———

X 2N (17 m; —k+ 75 {mn}n:17 {Qn}nzl) 5 (13) 01 " —6— Simulaton

. Z — — — Approximation

withk=1,...,m; —1 and o ‘ : —————
0 5 10 15 20

lologw(z) (dB)

Qi N 1\ "
- N N _
En (imi {mn b {0 l) = =] (5_5) '

[li= & g~ ¢ Fig. 1. Analytical and simulated CDF of the sum B’ RVs (p = 0.1 and
8=1).

With the PDF expressions ¢f; and.S;, we can derive the PDF

of 5 ad statistic 7' is defined as the maximal difference between the
N mi N N simulated and approximate CDFs. The critical véalyg, is given
fe(2)= ZZ:N (%Ja {mntn_1, {Qn}nZI)f’Y (2 NB, 5, j8%) , as Thax ~ —% In §, wherea = 5% is the significance level
ot (14y @andv = 10"is the number of random samples of RYs|[20]. Then,
. o Tmax = 0.0136. The hypothesid, is not always accepted with
where f,(-) is the PDF of a'I" RV and is given byl[11, Eq. (2)] 95% significance and the accuracy of the proposed approximation
NOti NBtj g depends on the combinations of the parameigrsn,, Q,,
£y (2 NB, 4, ) = 2NB) 7 2= —Knp (2 NBz) 5 and N. For example, the hypothesH,, is accepted with
[ (j)T(NB)(Q;) 2 T = 0.0118 < Tax When considering exponential correlation
(15) with the following typical valuesin; = ms =1, Q1 = Qs =1,
B8=1, p=0.5 and N = 2. However, when we sei = 0.1 and
keep other parameters the same, the hypotHdgids rejected

i

Finally, the corresponding CDF is given by

N m; .
: 1 with 7= 0.0198 > Tihax-
Fa(z) = 2n (64, fma N A Y ) ————
520 = 2 22 (0 I A0 1) 17 )
IV. APPLICATIONS INWIRELESSCOMMUNICATIONS
SRe o N EALN I (16) versi :
1317, NB,j,0 | A. Diversity Receivers

Note that the approximating PDF and CDF expressibnk (14) ar]’(]Jn thllsds.ectl(_)tn, the .performanc?_ of varlousbg:tlas.ses |Oft F2u|tl
(18) are both in analytical form, since they involve finitestesl channel diversity receivers, operating over arbitrarityrelate

summations. The weights coefficients can be easily and tyic eneralizedk fading channels, is analyzed in terms of OP and

: - ER. For each receive antenna, the transmitted signal snmps
evaluated by using the recursive formdal(13). through the fading channel and perturbed by complex additiv

o white Gaussian noise (AWGN) with zero mean and variaNge
B. Approximation Accuracy The instantaneous signal-to-noise ratio (SNR) of the bmaseb
In order to evaluate the accuracy of our approximating tesuleceived symbol in thexth diversity branch is given by, =
the simulated and analytical_(16) CDF curves of the sum b‘fn|2ES/N0, whereE, is the energy of the transmitted complex
exponentially correlated’ T RVs are plotted in Fig[]1l. Note symbol andh, is the complex gain of theith generalized-
that the analytical CDF expression can be only obtained Wy fading channel. By assuming that each fading channel has
calculating the eigenvalues and algebraic multiplicity &mch identical parameters, the average SNR per branch is the same
specific covariance matrix. From Fifl 1, it is clear that thgnd can be expressed as = E(Ihnlz) E,/Ny = ), where
analytical results approximate the exact ones with goodracy. 9 ) ) ,
Moreover, note that the accuracy of the analytical CDF esgiom E (|h"| ) = mf2. Furthermore, since shadowing F)ccurs in large
depends on the values of parametersV, 8, m,, andQ,. As a geographical areas, we assume that the shadowmg pararoater
general comment, higher values f and smaller values of2, ©ach antenna are same, i.8,,= 5, and the AWGN IS uncorre-
yield better accuracy. Iateo_l among the diversity chanAneIs [21]. Wih = |h,|"A/mQ,
Furthermore, we use a KS goodness-of-fit statistical test th¢ joint PDF and CDF o = [A;, z,..., Ax] can be %b'
i imati tained asfy (A) = fo (B2, 22N, 22)y)/(A/mQ)
validate the accuracy of the approximation results. The &S t A 2 (AL A2, AN
andFx (A) = F, (mQ3t, mQ32 ... mQAY), respectively.
2Since the PDF expression involves the distinct eigenvatiethe covariance 1) Selection Combining:The output SNR of SC diversity
matrix Ky, it is not straightforward to derive similar expressions tioe case of . . . e .
Jeceivers is the highest instantaneous SNR among the teultip

exponentially correlatedT" RVs. Yet, the authors iri_[6] have given the PDF an >
CDF expressions for the case of independehtRVs. branches, i.e.\sc = max{A1,A2,...,An}. An outage event




happens when the SNRs of all branches fall below a givenFor the BER of BPSK in the high-SNR regime, we invoke the
threshold\y. From [8), the OP is obtained as seminal parametrization in terms of diversity ord&r and coding

W 2in gainG.. By keeping only the dominant term ¢f (21), the BER of
_ Pn.nti| MRC receivers over arbitrarily correlated generalizédfadin
Poulp) = ———— y g g
out( th) [F (ﬂ)]Nr (m) ) % —o g [znlr m+2

channels is given by

« G2’1 ﬂmpj_’j/\th 1 H —m—a; (17) Pt')\ARC’OO _ (Gc % Q)*Gd +o (Qde) ’ (22)
DTN mebag, g0 [ 1P where
The OP for small values ofy, is typically interesting in a N
communication systems. We now focus on the high-SNR reglmé;d = Z Tj (23)
Based on[[15, Eq. (9.303)] and |17, Eq. (07.22.02.0001, @ig] =1
high-SNR outage can be derived frdml(17) and(iera; —3) ¢ w|m > R
7. as ’ Ge = —| | Z HPJJ T (tj—7) T (15)

AL BT (m) ;S oo

|W|m —-m—a Tj) N )
out At — E 17 N7 N1 2in
( h) [I‘ (ﬂ)]Nr (m) _ H Djj . y (3ﬁpg,g) H [ |pn,n+1|

" 4 il (m + i)
)\th R |pn,n+1|2ln
pmpj; < 3 I1 T (i) erai i
ot | b (m+iy) the diversity order does not depend on the correlation keiwe
. N fading channels, but depends on the shape parameter of-small
where; = min(m + oy, §) andt; = max(m + ;,3). (18) scale fading and scale parameter of Gamma shadowing. Note
indicates that using more antennas at the receiver affeetsigh- that, for large values oB, the diversity ordeiG, is limited by

SNR slope, since the high-SNR slope grows linearly with  the shape parameter of small-scale fading.
2) Maximal-Ratio CombiningThe MRC receiver can achieve

optimal performance in terms of maximizing the SNR at the
output of the combinef [1]. The instantaneous SNR per symbolB. Free-Space Optical Communications

] . . N
an N-branch MRC receiver is given byre = >, An- TheN,  \ye consider a diversity FSO system wifii apertures and
the approximating expression for the OP of MRC receivers i$e heam, where the underlying sub-channels between fairs o

) . (24)

+o )\thj:JTj , (18) Based on the aforementioned expressions, we can notice that

given by transmit-receive apertures are correlated. Furtherma@ssume
N m; that the optimal combining (OE)scheme is deployed. Le?, be
Pout (M) =~ ZZHN i 4, {ma } {0 ) the fading coefficient of the:-th sub-channelp = 1,2,..., N,
i=1 j=1 that follows theI'T' distribution with arbitrary correlation. The
X Ey (An; NB, 7,7%) (19) instantaneous electrical SNR at theth receive aperture can be

o ) , ) defined ash, = (nP,)?/No and the average electrical SNR
where -, (-) is given in [16). For(N 5 — j) ¢ Z, the OP inthe s X = _ |,E(P,)|/N,, where is the optical-to-electrical

high-SNR regime is given by conversion coefficient. Without loss of generality, we nalize

N my the average irradiance agE,) = 1 and assume that the average
P (M) = ZZHN iy g, {fmn }0 1, { Q03 ) electrical SNRs at different receive apertures are equel, i
i=1 j=1 An = A. The variance of the noise in each receiveiNig/2N
; and the average BER is defined asl|[22, Eq. (17
% ]‘—‘ (eJC- ) (NB)\th) + 0 (Athcj) (20) g [ q ( )]
J z
wherec; & min(Nj,j) ande; £ max(Np,j). It is clear that / / (\/Wq ZPQ) fo () dp, (25)
the diversity order depends on the values of the paramaters

andm;. For the case of MRCy; in (20) should be integer. A
We now consider the average BER of the MRC receiver f‘fj:t] e;DeQ (jjeraot(;;hf (G?u;SItﬁZ fuor:ﬁ':lo;Dé (iqth(: \21]0{;0
noncoherent binary frequency-shift keying (NBFSK). Based obltl';ur?éd WithNthe aid gﬂ6) J P
[1l Eq. (9.254)], the average BER expression is giveiids® = In strong atmospheric channels, the fading parameteasd

0.5M e (9), Wwhereg = 0.5 for NBFSK. Futhermore, the MGF . i
of the output SNR can be obtained frofd (9) &6, (s) — m can be respectively expressed [ds [8, Egs. (5)-(6)]

My (8,8,...,8). [ -
Following a similar method of[]5], the approximate BER of 8= |exp 0.4903 _ (26)
MRC receivers for binary phase-shift keying (BPSK) modolat (1 101842 + 0.560 12/0) ’
is given by
pre o Loy g (2 21 0.5103 (1+069 12/5) e B
Z i 2
12 awre (1) + 4 AMRC (3) (21) m = | exp 5/6 -1 , (27)
12 5
The approximate BER[(21) provides a very useful metric of (1 +0.9d2 + 0.62d205>/° )

communication systems. Furthermoie,](21) can reducel t&d5,
(15)] for exponentially correlated multivariald® RVs. 3In FSO communications, the term OC is used instead of MRC.
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Fig. 2. Analytical, simulated and high-SNR approximatio® ©f SC diversity

receivers with three branches over exponentially corelafeneralizeds” fading
channels against the inverse normalized outage threshtlg, (o = 0.25 and
m = 2).

whereod = 0.492C2k™/L'1/6 andd = \/kD?/4L with L being
the distance between transmitter and receiters the optical
wavenumberD is the aperture diameter aef = 1.7 x 1014
is the refractive-index structure parameter.

The integral in[(Zb) is very difficult to be evaluated in cldse

form, so we use a simple and accurate exponential approximat
for Q(-) [B, Eq. (14)] to derive an approximate result. Thén] (25,

can be written as
N

oo oo 2
o [T [ (Lo (12

D

P2>
1

1 n? al 2
+ZGXP<_3N—NO lpn fo (p) dp

Substituting[(B) into[{28) and using [16, Egs. (11), (14)H4b6,
Eqg. (21)], we derive the average BER as

Pb°°~ < NeRY. _>+ A<m,ﬂ,\/%>, (29)

where

(28)

A 2N(m+,8—2)|W|m
A 22 1L
(m, B, ) =T BT (m) .

N
. 4z
—m—a; ~1,4
| E2¥ i che (5]9, .
=1 J5J

>

Lin—1=0n=1

|2pn n+1|
inT (m—+in)

28
= |,

1-8
2 )

2| 1(mtey) 2-(mtay)
2 2
) :

Note that for the special case of exponentially correlated

atmospheric turbulencd, (29) coincides with a previousigvin
expression[[b, Eq. (19)].
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Fig. 4. OP of MRC diversity receivers over exponentiallyretated generalized-
K fading channels against the inverse normalized outagshbl@g) /Ay (8 = 1,
mp =m = 1).

frequent heavy shadowing, Karasawa shadowing and infreque
light shadowing, respectively|[5]. It is clear that for expmtially
correlated generalizei- fading channels, the analytical results
agree closely with the exact OP results obtained via sinaulist
Furthermore, the high-SNR approximations are sufficietigit
and become exact, even at moderate SNR values. As expdaed, t
OP that corresponds to light shadowing € 75.1155) is larger
than the OP that corresponds to heavy shadowihg (1.0931).
Moreover, this trend is more pronounced for smaller values.o

Figure [3 presents the simulated, analytidal] (21) and high-
SNR asymptotic result$ (P2) for the BER of triple SC diversit
receivers over linearly correlated generalizédading channels.
The linearly correlated model is a more general case thaexhe
ponential one with a correlation Toeplitz structure mattefined
as¥;; =1fori=jandyL,;; =%;; = p;; for i # j. We note

In our simulation, without loss of generality, it is assumethat as the scale and shadowing coefficients increase, érages
here thatl; = I, = ... = Iy_; and every branch has theBER decreases. For all scenarios, the analytical resulezagth
same average SNR. For the OP of three branches with S@he Monte-Carlo ones. Likewise, the diversity order andirgd
receivers, the Monte-Carlo simulation results, analytiesults 9ains are accurately predicted. It is clear that the ditersider
(I7) and high-SNR approximatiof (18) are compared in Figepends on the shadowing parameters.

2. We again assume exponential correlation. The shadowingrhe simulated and approximate OP of MRC receivers over
parameter3 corresponds tol.0931, 7.9115 and 75.1155 for exponentially correlated generalizédfading channels are inves-
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Fig. 6. Average BER of space diversity FSO system with thigertares and
one beam over strong turbulence fading channels againsaviiage electrical
SNR .
[13]

tigated in Fig[4. It is obvious that the proposed approxiameis [14]
a lower bound of the simulated results. However, the diffeeds
not greater than 2 dB in all cases. Furthermore, the appiatiom
results are more accurate with the increased correlatiefficient
p and the decreased value df. [16]
We present the simulated and approximate BER perfor-
mance of quadruple MRC receivers over exponentially cateel [17]
generalizedX fading channels in Fid.]5. It is clear that the BER
decreases ag increases. Approximate BER curves are clodél

[15]

to the simulated results and can be used as an upper bound.

" and correlated coefficients = 0.2,0.5,0.7, respectively. Upon

1 using [26) and[(27), the respective values foand m can be
determined. From Fid.]16, it is clear that the approximateltes
of cases under consideration closely agree with the onesnelot
via Monte-Carlo simulations. Note that the average BEReases
by increasingp and L or decreasingh.
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