18 research outputs found

    Impact of Charge-Resonance Excitations on CT-Mediated J-Type Aggregation in Singlet and Triplet Exciton States of Perylene Di-Imide Aggregates: A TDDFT Investigation

    Get PDF
    The modulation of intermolecular interactions upon aggregation induces changes in excited state properties of organic molecules that can be detrimental for some optoelectronic applications but can be exploited for others. The time-dependent density functional theory (TDDFT) is a cost-effective approach to determining the exciton states of molecular aggregates, and it has been shown to provide reliable results when coupled with the appropriate choice of the functional. Here we apply a general procedure to analyze the aggregates’ exciton states derived from TDDFT calculations in terms of diabatic states chosen to coincide with local (LE) and charge-transfer (CT) excitations within a restricted orbital space. We apply the approach to study energy profiles, interstate couplings, and the charge-transfer character of singlet and triplet exciton states of perylene di-imide aggregates (PDI). We focus on the intermolecular displacement along the longitudinal translation coordinate, which mimics different amounts of slip-stacking observed in PDI crystals. The analysis, in terms of symmetry-adapted Frenkel excitations (FE) and charge-resonance (CR) states and their interactions, discloses how the interchange of the H/J character for small longitudinal shifts, previously reported for singlet exciton states, also occurs for triplet excitons.This research was funded by Ministerio de Economía y Competitividad of Spain, grant number PID2019-109555GB-I00 and RED2018-102815-T and by Eusko Jaurlaritza, grant number PIBA19-0004

    Intermolecular Interactions and Charge Resonance Contributions to Triplet and Singlet Exciton States of Oligoacene Aggregates

    Get PDF
    Intermolecular interactions modulate the electro-optical properties of molecular materials and the nature of low-lying exciton states. Molecular materials composed by oligoacenes are extensively investigated for their semiconducting and optoelectronic properties. Here, we analyze the exciton states derived from time-dependent density functional theory (TDDFT) calculations for two oligoacene model aggregates: naphthalene and anthracene dimers. To unravel the role of inter-molecular interactions, a set of diabatic states is selected, chosen to coincide with local (LE) and charge-transfer (CT) excitations within a restricted orbital space including two occupied and two unoccupied orbitals for each molecular monomer. We study energy profiles and disentangle inter-state couplings to disclose the (CT) character of singlet and triplet exciton states and assess the influence of inter-molecular orientation by displacing one molecule with respect to the other along the longitudinal translation coordinate. The analysis shows that (CT) contributions are relevant, although comparably less effective for triplet excitons, and induce a non-negligible mixed character to the low-lying exciton states for eclipsed monomers and for small translational displacements. Such (CT) contributions govern the La/Lb state inversion occurring for the low-lying singlet exciton states of naphthalene dimer and contribute to the switch from H- to J-aggregate type of the strongly allowed Bb transition of both oligoacene aggregates

    Effect of the iodine atom position on the phosphorescence of BODIPY derivatives: a combined computational and experimental study

    Get PDF
    A new BODIPY derivative (o-I-BDP) containing an iodine atom in the ortho position of the meso-linked phenyl group was prepared. Photophysical and electrochemical properties of the molecule were compared to previously reported iodo BODIPY derivatives, as well as to the non-iodinated analog. While in the case of derivatives featuring iodine substituents in the BODIPY core, efficient population of the triplet state is accompanied by a substantial positive shift of the reduction potential compared to pristine BODIPY, o-I-BDP displays phosphorescence and simultaneously maintains the electrochemical properties of unsubstituted BODIPYs. A theoretical investigation was settled to analyze results and rationalize the influence of iodine position on electronic and photophysical properties, with the purpose of preparing a fully organic phosphorescent BODIPY derivative. TD-DFT and spin-orbit coupling calculations shed light on the subtle effects played by the introduction of iodine atom in different positions of BODIPY

    Raman Activities of Cyano-Ester Quinoidal Oligothiophenes Reveal Their Diradical Character and the Proximity of the Low-Lying Double Exciton State

    Get PDF
    Quinoidal oligothiophenes have received considerable attention as interesting platforms with remarkable amphoteric redox behavior associated with their diradical character increasing with the conjugation lengths. In this work, we considered a family of quinoidal oligothiophenes bearing cyano-ester terminal groups and characterized them by UV-Vis-NIR absorption and Raman spectroscopy measurements at different excitation wavelengths. The experimental investigation is complemented by quantum-chemical studies to assess the quality of computed density functional theory (DFT) ground state structures and their influence on predicted Raman intensities. In addition, resonance conditions with the optically active HOMO→LUMO transition as well as with the more elusive state dominated by the doubly excited HOMO,HOMO→LUMO,LUMO configuration, are determined with DFT-MRCI calculations and their contributions to Raman activity enhancement are discussed in terms of computed vibrational Huang–Rhys (HR) factorsWe thank MINECO/FEDER of the Spanish Government (project reference PGC2018-098533-B-100) and the Junta de Andalucía, Spain (UMA18FEDERJA057). Partial funding for open access charge: Universidad de Málag

    Orbital Nature of Carboionic Monoradicals Made from Diradicals

    Get PDF
    The electronic, optical, and solid state properties of a series of monoradicals, anions and cations obtained from starting neutral diradicals have been studied. Diradicals based on s-indacene and indenoacenes, with benzothiophenes fused and in different orientations, feature a varying degree of diradical character in the neutral state, which is here related with the properties of the radical redox forms. The analysis of their optical features in the polymethine monoradicals has been carried out in the framework of the molecular orbital and valence bond theories. Electronic UVVis-NIR absorption, X-ray solid-state diffraction and quantum chemical calculations have been carried out. Studies of the different positive-/negative-charged species, both residing in the same skeletal π-conjugated backbone, are rare for organic molecules. The key factor for the dual stabilization is the presence of the starting diradical character that enables to indistinctively accommodate a pseudo-hole and a pseudoelectron defect with certainly small reorganization energies for ambipolar charge transport.The authors thank the Spanish Ministry of Science and Innovation (projects MINECO/FEDER PGC2018-098533-B-100 and PID2021-127127NB-I00) and the Junta de Andalucía, Spain (UMA18FEDERJA057 and Proyecto de Excelencia PROYEXCEL- 00328). We also thank the Research Central Services (SCAI) of the University of Málaga and the US National Science Foundation (CHE-1954389 to M.M.H., CHE-2003411 to M.A. P.). F.N and Y.D. acknowledge support from “Valutazione della Ricerca di Ateneo” (VRA)-University of Bologna. Y.D. acknowledges Ministero dell’Università e della Ricerca (MUR) for her Ph.D. fellowship. Funding for open access charge: Universidad de Málaga / CBU

    Medium Diradical Character, Small Hole and Electron Reorganization Energies and Ambipolar Transistors in Difluorenoheteroles

    Get PDF
    Four difluorenoheteroleshavinga centralquinoidalcore with the heteroringvaryingas furan,thiophene,its dioxidederivativeand pyrrolehave shownto be mediumcharacterdiradicals.Solid-statestructures,optical,photophysical,magnetic,and electrochemicalpropertieshave been discussedin termsof diradicalcharacter,variationof aromaticcharacterand captoda-tive effects(electronaffinity).Organicfield-effecttran-sistors(OFETs)have been prepared,showingbalancedholeand electronmobilitiesof the orderof103cm2V1s1or ambipolarchargetransportwhichisfirst inferredfrom their redoxamphoterism.Quantumchemicalcalculationsshow that the electricalbehaviorisoriginatedfrom the mediumdiradicalcharacterwhichproducessimilarreorganizationenergiesfor hole andelectrontransports.The visionof a diradicalas simulta-neouslybearingpseudo-holeand pseudo-electronde-fects might justifythe reducedvaluesof reorganizationenergiesfor both regimes.Structure-functionrelation-ships betweendiradicaland ambipolarelectricalbehav-ior are revealed.The authorsthankthe SpanishMinistryof ScienceandInnovation(projectsMINECO/FEDERPGC2018-098533-B-100,and PID2019-110305GB-I00),the Junta de Andalucíaand GeneralidadValenciana,Spain (UMA18FEDERJA057,P18-FR-4549and Prometeo/2019/076)and JSPS KAKENHIgrant (JP21K05042for S.-i.K.,JP21K04995and JP21H05489for R.K., JP21H01887and JP20K21173for M.N.).S.-i.K.gratefullyacknowledgesthe AsahiGlassFoundationforfinancialsupport.We also thankthe ResearchCentralServices(SCAI)of the Universityof Málaga,UnidaddeEspectroscopíaVibracional(Dra. Capely Dr. Zafra)andUnidadde OpticaNo-Linealy EspectroscopíaUltrarápida(Dr. Román).This work was partiallysupportedby theCooperativeResearchProgram“NetworkJoint ResearchCenterfor Materialsand Devices”(KyushuUniversity).WethankProf. ShuheiHigashibayashi(KeioUniversity)forassistancewith synthesis.Mass spectrometricdata werecollectedat HiroshimaUniversity(N-BARD:Ms. TomokoAmimoto).Theoreticalcalculationswere partlyperformedusing ResearchCenterfor ComputationalScience(R-CCS),Okazaki,Japan.F.N and Y.D. acknowledgesupportfrom“Valutazionedella Ricercadi Ateneo”(VRA)—Universityof Bologna.Y.D. acknowledgesMinisterodell’Universitàedella Ricerca(MUR)for her Ph.D. fellowship. Funding for open access charge: Universidad de Málaga / CBU

    Modelling the influence of diradical character and aggregation on conjugated molecular materials

    No full text
    Molecular materials are made by the assembly of specifically designed molecules to obtain bulk structures with desired solid-state properties, enabling the development of materials with tunable chemical and physical properties. These properties result from the interplay of intra-molecular constituents and weak intermolecular interactions. Thus, small changes in individual molecular and electronic structure can substantially change the properties of the material in bulk. The purpose of this dissertation is, thus, to discuss and to contribute to the structure-property relationships governing the electronic, optical and charge transport properties of organic molecular materials through theoretical and computational studies. In particular, the main focus is on the interplay of intra-molecular properties and inter-molecular interactions in organic molecular materials. In my three-years of research activity, I have focused on three major areas: 1) the investigation of isolated-molecule properties for the class of conjugated chromophores displaying diradical character which are building blocks for promising functional materials; 2) the determination of intra- and intermolecular parameters governing charge transport in molecular materials and, 3) the development and application of diabatization procedures for the analysis of exciton states in molecular aggregates. The properties of diradicaloids are extensively studied both regarding their ground state (diradical character, aromatic vs quinoidal structures, spin dynamics, etc.) and the low-lying singlet excited states including the elusive double-exciton state. The efficiency of charge transport, for specific classes of organic semiconductors (including diradicaloids), is investigated by combining the effects of intra-molecular reorganization energy, inter-molecular electronic coupling and crystal packing. Finally, protocols aimed at unravelling the nature of exciton states are introduced and applied to different molecular aggregates. The role of intermolecular interactions and charge transfer contributions in determining the exciton state character and in modulating the H- to J- aggregation is also highlighted

    The Low Lying Double-Exciton State of Conjugated Diradicals: Assessment of TDUDFT and Spin-Flip TDDFT Predictions

    No full text
    Conjugated singlet ground state diradicals have received remarkable attention owing to their potential applications in optoelectronic devices. A distinctive character of these systems is the location of the double-exciton state, a low lying excited state dominated by the doubly excited HOMO,HOMOLUMO,LUMO configuration, (where HOMO=highest occupied molecular orbital, LUMO=lowest unoccupied molecular orbital) which may influence optical and other photophysical properties. In this contribution we investigate this specific excited state, for a series of recently synthesized conjugated diradicals, employing time dependent density functional theory (TDDFT) based on the unrestricted parallel spin reference configuration in the spin-flip formulation (SF-TDDFT) and standard TD calculations based on the unrestricted antiparallel spin reference configuration (TDUDFT). The quality of computed results is assessed considering diradical and multiradical descriptors, and the excited state wavefunction compositio

    Ambipolar Charge Transport in Organic Semiconductors: How Intramolecular Reorganization Energy Is Controlled by Diradical Character

    Get PDF
    The charged forms of π–conjugated chromophores are relevant in the field of organic electronics as charge carriers in optoelectronic devices, but also as energy storage substrates in organic batteries. In this context, intramolecular reorganization energy plays an important role in controlling material efficiency. In this work, we investigate how the diradical character influences the reorganization energies of holes and electrons by considering a library of diradicaloid chromophores. We determine the reorganization energies with the four-point adiabatic potential method using quantum–chemical calculations at density functional theory (DFT) level. To assess the role of diradical character, we compare the results obtained, assuming both closed-shell and open-shell representations of the neutral species. The study shows how the diradical character impacts the geometrical and electronic structure of neutral species, which in turn control the magnitude of reorganization energies for both charge carriers. Based on computed geometries of neutral and charged species, we propose a simple scheme to rationalize the small, computed reorganization energies for both n-type and p-type charge transport. The study is supplemented with the calculation of intermolecular electronic couplings governing charge transport for selected diradicals, further supporting the ambipolar character of the investigated diradicals

    Impact of Di- and Poly-Radical Characters on the Relative Energy of the Doubly Excited and La States of Linear Acenes and Cyclacenes

    Get PDF
    Linear and cyclic acenes are polycyclic aromatic hydrocarbons that can be viewed as building blocks of graphene nanoribbons and carbon nanotubes, respectively. While short linear acenes demonstrated remarkable efficiency in several optoelectronic applications, the longer members are unstable and difficult to synthesize as their cyclic counterparts. Recent progress in on-surface synthesis, a powerful tool to prepare highly reactive species, opens promising perspectives and motivates the computational investigations of these potentially functional molecules. Owing to their di- and poly-radical character, low-lying excited states dominated by doubly excited configurations are expected to become more important for longer members of both linear and cyclic molecules. In this work, we investigate the lowest-lying La and the doubly excited (DE) state of linear acenes and cyclacenes, with different computational approaches, to assess the influence of the di-/poly-radical characters (increasing with the molecular dimensions) on their relative order. We show that DFT/MRCI calculations correctly reproduce the crossing of the two states for longer linear acenes, while TDUDFT calculations fail to predict the correct excitation energy trend of the DE state. The study suggests a similarity in the excited electronic state pattern of long linear and cyclic acenes leading ultimately to a lowest lying dark DE state for both
    corecore