556 research outputs found

    Bis(N,N-diisopropyl­butanaminium) bis­[di-μ-chlorido-bis­[dichlorido­cuprate(II)]]

    Get PDF
    In the title compound, (C10H24N)2[Cu2Cl6], N,N-diisopropyl­butanamine is protonated on the N atom. The CuII atom in the centrosymmetric [Cu2Cl6]2− anion has a distorted tetra­hedral geometry. In the crystal, the cations and anions are connected by N—H⋯Cl and C—H⋯Cl hydrogen bonds into layers parallel to (100)

    2,4,6-Trimethyl­pyridinium dihydrogen phosphate

    Get PDF
    The asymmetric unit of the title compound, C8H12N+·H2PO4 −, contains two H2PO4 − anions and two 2,4,6-trimethyl­pyridinium cations. In the crystal, the anions are linked by O—H⋯O hydrogen bonds, forming supra­molecular chains running along the a axis; the cations are connected to the anion chains by N—H⋯O hydrogen bonds. Weak inter­molecular C—H⋯O hydrogen bonding is also present in the crystal structure

    Assessment of heterotrophic growth supported by soluble microbial products in anammox biofilm using multidimensional modeling

    Get PDF
    Anaerobic ammonium oxidation (anammox) is known to autotrophically convert ammonium to dinitrogen gas with nitrite as the electron acceptor, but little is known about their released microbial products and how these are relative to heterotrophic growth in anammox system. In this work, we applied a mathematical model to assess the heterotrophic growth supported by three key microbial products produced by bacteria in anammox biofilm (utilization associated products (UAP), biomass associated products (BAP), and decay released substrate). Both One-dimensional and two-dimensional numerical biofilm models were developed to describe the development of anammox biofilm as a function of the multiple bacteria-substrate interactions. Model simulations show that UAP of anammox is the main organic carbon source for heterotrophs. Heterotrophs are mainly dominant at the surface of the anammox biofilm with small fraction inside the biofilm. 1-D model is sufficient to describe the main substrate concentrations/fluxes within the anammox biofilm, while the 2-D model can give a more detailed biomass distribution. The heterotrophic growth on UAP is mainly present at the outside of anammox biofilm, their growth on BAP (HetB) are present throughout the biofilm, while the growth on decay released substrate (HetD) is mainly located in the inner layers of the biofilm

    Activation of an AMP-activated protein kinase is involved in post-diapause development of Artemia franciscana encysted embryos

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cysts of <it>Artemia </it>can remain in a dormant state for long periods with a very low metabolic rate, and only resume their development with the approach of favorable conditions. The post-diapause development is a very complicated process involving a variety of metabolic and biochemical events. However, the intrinsic mechanisms that regulate this process are unclear.</p> <p>Results</p> <p>Herein we report the specific activation of an AMP-activated protein kinase (AMPK) in the post-diapause developmental process of <it>Artemia</it>. Using a phospho-AMPKα antibody, AMPK was shown to be phosphorylated in the post-diapause developmental process. Results of kinase assay analysis showed that this phosphorylation is essential for AMPK activation. Using whole-mount immunohistochemistry, phosphorylated AMPK was shown to be predominantly located in the ectoderm of the early developed embryos in a ring shape; however, the location and shape of the activation region changed as development proceeded. Additionally, Western blotting analysis on different portions of the cyst extracts showed that phosphorylated AMPKα localized to the nuclei and this location was not affected by intracellular pH. Confocal microscopy analysis of immunofluorescent stained cyst nuclei further showed that AMPKα localized to the nuclei when activated. Moreover, cellular AMP, ADP, and ATP levels in developing cysts were determined by HPLC, and the results showed that the activation of <it>Artemia </it>AMPK may not be associated with cellular AMP:ATP ratios, suggesting other pathways for regulation of <it>Artemia </it>AMPK activity.</p> <p>Conclusion</p> <p>Together, we report evidence demonstrating the activation of AMPK in <it>Artemia </it>developing cysts and present an argument for its role in the development-related gene expression and energy control in certain cells during post-diapause development of <it>Artemia</it>.</p

    Whisper-to-speech conversion using restricted Boltzmann machine arrays

    Get PDF
    Whispers are a natural vocal communication mechanism, in which vocal cords do not vibrate normally. Lack of glottal-induced pitch leads to low energy, and an inherent noise-like spectral distribution reduces intelligibility. Much research has been devoted to processing of whispers, including conversion of whispers to speech. Unfortunately, among several approaches, the best reconstructed speech to date still contains obviously artificial muffles and suffers from an unnatural prosody. To address these issues, the novel use of multiple restricted Boltzmann machines (RBMs) is reported as a statistical conversion model between whisper and speech spectral envelopes. Moreover, the accuracy of estimated pitch is improved using machine learning techniques for pitch estimation within only voiced (V) regions. Both objective and subjective evaluations show that this new method improves the quality of whisper-reconstructed speech compared with the state-of-the-art approaches

    Ulinastatin attenuates oxidation, inflammation and neural apoptosis in the cerebral cortex of adult rats with ventricular fibrillation after cardiopulmonary resuscitation

    Get PDF
    OBJECTIVE: The role of Ulinastatin in neuronal injury after cardiopulmonary resuscitation has not been elucidated. We aim to evaluate the effects of Ulinastatin on inflammation, oxidation, and neuronal injury in the cerebral cortex after cardiopulmonary resuscitation. METHODS: Ventricular fibrillation was induced in 76 adult male Wistar rats for 6 min, after which cardiopulmonary resuscitation was initiated. After spontaneous circulation returned, the rats were split into two groups: the Ulinastatin 100,000 unit/kg group or the PBS-treated control group. Blood and cerebral cortex samples were obtained and compared at 2, 4, and 8 h after return of spontaneous circulation. The protein levels of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) were assayed using an enzyme-linked immunosorbent assay, and mRNA levels were quantified via real-time polymerase chain reaction. Myeloperoxidase and Malondialdehyde were measured by spectrophotometry. The translocation of nuclear factor-κB p65 was assayed by Western blot. The viable and apoptotic neurons were detected by Nissl and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). RESULTS: Ulinastatin treatment decreased plasma levels of TNF-α and IL-6, expression of mRNA, and Myeloperoxidase and Malondialdehyde in the cerebral cortex. In addition, Ulinastatin attenuated the translocation of nuclear factor-κB p65 at 2, 4, and 8 hours after the return of spontaneous circulation. Ulinastatin increased the number of living neurons and decreased TUNEL-positive neuron numbers in the cortex at 72 h after the return of spontaneous circulation. CONCLUSIONS: Ulinastatin preserved neuronal survival and inhibited neuron apoptosis after the return of spontaneous circulation in Wistar rats via attenuation of the oxidative stress response and translocation of nuclear factor-κB p65 in the cortex. In addition, Ulinastatin decreased the production of TNF-α, IL-6, Myeloperoxidase, and Malondialdehyde

    Renal Function, Bisphenol A, and Alkylphenols: Results from the National Health and Nutrition Examination Survey (NHANES 2003–2006)

    Get PDF
    BACKGROUND: Urinary excretion of bisphenol A (BPA) and alkylphenols (APs) was used as a biomarker in most previous studies, but no study has investigated whether urinary excretion of these environmental phenols differed by renal function. OBJECTIVE: We estimated the association between renal function and urinary excretion of BPA and APs. METHODS: Analyses were conducted using data from the National Health and Nutrition Examination Survey (NHANES) 2003-2006. Renal function was measured as estimated glomerular filtration rate (eGFR) calculated by the Modification of Diet in Renal Disease (MDRD) Study equation and by the newly developed Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. Regression models were used to calculate geometric means of urinary BPA and APs excretion by eGFR category (&gt;= 90, 60-90, &lt;60 mL/min/m(2)) after adjusting for potential confounding factors. RESULTS: When we used the MDRD Study equation, participants without known renal disease (n = 2,573), 58.2% (n = 1,499) had mildly decreased renal function or undiagnosed chronic kidney disease. The adjusted geometric means for urinary BPA excretion decreased with decreasing levels of eGFR (p for trend = 0.04). The associations appeared primarily in females (p for trend = 0.03). Urinary triclosan excretion decreased with decreasing levels of eGFR (p for trend &lt;0.01) for both males and females, and the association primarily appeared in participants &lt;65 years of age. The association between BPA and eGFR was nonsignificant when we used the CKD-EPI equation. CONCLUSIONS: Urinary excretion of triclosan, and possibly BPA, decreased with decreasing renal function. The associations might differ by age or sex. Further studies are necessary to replicate our results and understand the mechanism.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000289065900035&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Environmental SciencesPublic, Environmental &amp; Occupational HealthToxicologySCI(E)22ARTICLE4527-53311

    InGaN-based light-emitting diodes with an embedded conical air-voids structure

    Get PDF
    The conical air-void structure of an InGaN light-emitting diode (LEDs) was formed at the GaN/sapphire interface to increase the light extraction efficiency. The fabrication process of the conical air-void structure consisted of a dry process and a crystallographic wet etching process on an undoped GaN layer, followed by a re-growth process for the InGaN LED structure. A higher light output power (1.54 times) and a small divergent angle (120o) were observed, at a 20mA operation current, on the treated LED structure when compared to a standard LED without the conical air-void structure. In this electroluminescence spectrum, the emission intensity and the peak wavelength varied periodically by corresponding to the conical air-void patterns that were measured through a 100nm-optical-aperture fiber probe. The conical air-void structure reduced the compressed strain at the GaN/sapphire interface by inducing the wavelength blueshift phenomenon and the higher internal quantum efficiency of the photoluminescence spectra for the treated LED structure
    corecore