30 research outputs found

    Residual Degradation Learning Unfolding Framework with Mixing Priors across Spectral and Spatial for Compressive Spectral Imaging

    Full text link
    To acquire a snapshot spectral image, coded aperture snapshot spectral imaging (CASSI) is proposed. A core problem of the CASSI system is to recover the reliable and fine underlying 3D spectral cube from the 2D measurement. By alternately solving a data subproblem and a prior subproblem, deep unfolding methods achieve good performance. However, in the data subproblem, the used sensing matrix is ill-suited for the real degradation process due to the device errors caused by phase aberration, distortion; in the prior subproblem, it is important to design a suitable model to jointly exploit both spatial and spectral priors. In this paper, we propose a Residual Degradation Learning Unfolding Framework (RDLUF), which bridges the gap between the sensing matrix and the degradation process. Moreover, a MixS2S^2 Transformer is designed via mixing priors across spectral and spatial to strengthen the spectral-spatial representation capability. Finally, plugging the MixS2S^2 Transformer into the RDLUF leads to an end-to-end trainable neural network RDLUF-MixS2S^2. Experimental results establish the superior performance of the proposed method over existing ones.Comment: 10 pages, 5 figure

    Ab initio study of lattice instabilities of zinc chalcogenides ZnX (X=O, S, Se, Te) induced by ultrafast intense laser irradiation

    No full text
    Ab initio calculations of lattice constants, lattice stabilities of ZnX (X=O, S, Se, Te) at different electronic temperatures (Te) have been performed using generalized gradient approximation (GGA) pseudopotential method within the density functional theory (DFT). The calculated phonon frequencies of ZnX at Te = 0 eV accord well with the experimental and other theoretical values. Firstly, it is indicated that the lattice constants of ZnX increase and all the phonon frequencies reduce as Te increases. Additionally, the transverse-acoustic phonon frequencies of ZnX are imaginary with the elevation of Te, namely the lattices of ZnX become unstable under ultrafast intense laser irradiation. Moreover, the transverse optical mode-longitudinal optical mode (LO-TO) splitting degree of ZnX (X=S, Se, Te) gradually decreases as the electronic temperature increases, mainly due to the reason that the electronic excitation weakens the strength ionicity of ionic crystal ZnX under intense laser irradiation. However, the LO-TO splitting degree of ZnO firstly increases and then decreases with the increase of electronic temperature. After that, it can be helpful for understanding the mechanism of ultrafast intense laser induced semiconductors damage

    A New Optical Surface Measurement Method with Iterative Sparsity-Constrained Threshold Phase Retrieval Algorithm

    No full text
    Due to its low complexity and acceptable accuracy, phase retrieval technique has been proposed as an alternative to solve the classic optical surface measurement task. However, to capture the overall wave field, phase retrieval based optical surface measurement (PROSM) system has to moderate the CCD position during the multiple-sampling procedure. The mechanical modules of CCD movement may bring about unexpectable deviation to the final results. To overcome this drawback, we propose a new PROSM method based on spatial light modulator (SLM). The mechanical CCD movement can be replaced by an electrical moderation of SLM patterns; thus the deviation can be significantly suppressed in the new PROSM method. In addition, to further improve the performance, we propose a new iterative threshold phase retrieval algorithm with sparsity-constraint to effectively reconstruct the phase of wave field. Experimental results show that the new method provides a more simple and robust solution for the optical surface measurement than the traditional techniques and achieves higher accuracy

    Single-Shot Object Detection with Split and Combine Blocks

    No full text
    Feature fusion is widely used in various neural network-based visual recognition tasks, such as object detection, to enhance the quality of feature representation. It is common practice for both the one-stage object detectors and the two-stage object detectors to implement feature fusion in feature pyramid networks (FPN) to enhance the capacity to detect objects of different scales. In this work, we propose a novel and efficient feature fusion unit, which is referred to as the Split and Combine (SC) Block, that splits the input feature maps into several parts, then processes these sub-feature maps with different emphasis, and finally gradually concatenates the outputs one-by-one. The SC block implicitly encourages the network to focus on features that are more important to the task, thus improving network efficiency and reducing inference computations. In order to prove our analysis and conclusions, a backbone network and an FPN employing this technique are assembled into a one-stage detector and evaluated on the MS COCO dataset. With the newly introduced SC block and other novel training tricks, our detector achieves a good speed-accuracy trade-off on COCO test-dev set, with 37.1% AP (average precision) at 51 FPS and 38.9% AP at 40 FPS

    Automatic lung nodule detection using multi-scale dot nodule-enhancement filter and weighted support vector machines in chest computed tomography.

    No full text
    A novel CAD scheme for automated lung nodule detection is proposed to assist radiologists with the detection of lung cancer on CT scans. The proposed scheme is composed of four major steps: (1) lung volume segmentation, (2) nodule candidate extraction and grouping, (3) false positives reduction for the non-vessel tree group, and (4) classification for the vessel tree group. Lung segmentation is performed first. Then, 3D labeling technology is used to divide nodule candidates into two groups. For the non-vessel tree group, nodule candidates are classified as true nodules at the false positive reduction stage if the candidates survive the rule-based classifier and are not screened out by the dot filter. For the vessel tree group, nodule candidates are extracted using dot filter. Next, RSFS feature selection is used to select the most discriminating features for classification. Finally, WSVM with an undersampling approach is adopted to discriminate true nodules from vessel bifurcations in vessel tree group. The proposed method was evaluated on 154 thin-slice scans with 204 nodules in the LIDC database. The performance of the proposed CAD scheme yielded a high sensitivity (87.81%) while maintaining a low false rate (1.057 FPs/scan). The experimental results indicate the performance of our method may be better than the existing methods
    corecore