723 research outputs found

    Spectral Energy Distributions for Disk and Halo M--Dwarfs

    Get PDF
    We have obtained infrared (1 to 2.5 micron) spectroscopy for 42 halo and disk dwarfs with spectral type M1 to M6.5. These data are compared to synthetic spectra generated by the latest model atmospheres of Allard & Hauschildt. Photospheric parameters metallicity, effective temperature and radius are determined for the sample. We find good agreement between observation and theory except for known problems due to incomplete molecular data for metal hydrides and water. The metal-poor M subdwarfs are well matched by the models as oxide opacity sources are less important in this case. The derived effective temperatures for the sample range from 3600K to 2600K; at these temperatures grain formation and extinction are not significant in the photosphere. The derived metallicities range from solar to one-tenth solar. The radii and effective temperatures derived agree well with recent models of low mass stars.Comment: 24 pages including 13 figures, 4 Tables; accepted by Ap

    Analysis of a Very Massive DA White Dwarf via the Trigonometric Parallax and Spectroscopic Methods

    Full text link
    By two different methods, we show that LHS 4033 is an extremely massive white dwarf near its likely upper mass limit for destruction by unstable electron captures. From the accurate trigonometric parallax reported herein, the effective temperature (T=10,900 K) and the stellar radius (R=0.00368 R_sun) are directly determined from the broad-band spectral energy distribution -- the parallax method. The effective temperature and surface gravity are also estimated independently from the simultaneous fitting of the observed Balmer line profiles with those predicted from pure-hydrogen model atmospheres -- the spectroscopic method (T=10,760 K, log g=9.46). The mass of LHS 4033 is then inferred from theoretical mass-radius relations appropriate for white dwarfs. The parallax method yields a mass estimate of 1.310--1.330 M_sun, for interior compositions ranging from pure magnesium to pure carbon, respectively, while the spectroscopic method yields an estimate of 1.318--1.335 M_sun for the same core compositions. This star is the most massive white dwarf for which a robust comparison of the two techniques has been made.Comment: 17 pages, including 4 figures, Accepted for Ap.

    Management of Informal Mathematical Knowledge – Lessons Learned from the Trial-Solution Project

    Full text link

    X-ray Detections of Two Young Bona-Fide Brown Dwarfs

    Full text link
    I report here the detection of two bona-fide brown dwarfs by XMM-Newton: [GY92] 141 in the rho-Ophiuchus star forming region and DENIS-P J155601-233809 in the Upper Scorpius OB association. The two objects have been detected with luminosities of Lx=8.35\pm2.86*10^28 erg/s and Lx=6.54\pm1.35*10^28 erg/s respectively, corresponding to luminosity ratios of log(Lx/Lbol)= -2.07 and log(Lx/Lbol)= -2.69. The two sources were close to the limit of detection of the instruments at only 2~3-sigma above the background level, and no significant flare or variation could be detected during the 48.3ks and 33.9ks observations. [GY92] 141 had already been observed 10 months earlier with Chandra (see 2001 ApJ, 563, 361) with a luminosity ~14 times fainter than the one I report here, meaning that the X-ray emission of this object is strongly variable.Comment: 9 pages, 3 figures, accepted for A&

    The Solar Neighborhood. XXXIX. Parallax Results from the CTIOPI and NOFS Programs: 50 New Members of the 25 Parsec White Dwarf Sample

    Get PDF
    We present 114 trigonometric parallaxes for 107 nearby white dwarf (WD) systems from both the Cerro Tololo Inter-American Observatory Parallax Investigation (CTIOPI) and the U. S. Naval Observatory Flagstaff Station (NOFS) parallax programs. Of these, 76 parallaxes for 69 systems were measured by the CTIOPI program and 38 parallaxes for as many systems were measured by the NOFS program. A total of 50 systems are confirmed to be within the 25 pc horizon of interest. Coupled with a spectroscopic confirmation of a common proper motion companion to a Hipparcos star within 25 pc as well as confirmation parallax determinations for two WD systems included in the recently released Tycho Gaia Astrometric Solution (TGAS) catalog, we add 53 new systems to the 25 pc WD sample - a 42% increase. Our sample presented here includes four strong candidate halo systems, a new metal-rich DAZ WD, a confirmation of a recently discovered nearby short-period (P = 2.85 hr) double degenerate, a WD with a new astrometric pertubation (long period, unconstrained with our data), and a new triple system where the WD companion main-sequence star has an astrometric perturbation (P \sim 1.6 yr).Comment: 32 pages, 12 figures. Figure 4 in the manuscript is a representative set of plots - plots for all WDs presented here are available (allfits_photo.pdf, allfits_photo_DQ.pdf, and allfits_photo_DZ.pdf). Accepted for publication in The Astronomical Journa

    New Models for a Triaxial Milky Way Spheroid and Effect on the Microlensing Optical Depth to the Large Magellanic Cloud

    Full text link
    We obtain models for a triaxial Milky Way spheroid based on data by Newberg and Yanny. The best fits to the data occur for a spheroid center that is shifted by 3kpc from the Galactic Center. We investigate effects of the triaxiality on the microlensing optical depth to the Large Magellanic Cloud (LMC). The optical depth can be used to ascertain the number of Massive Compact Halo Objects (MACHOs); a larger spheroid contribution would imply fewer Halo MACHOs. On the one hand, the triaxiality gives rise to more spheroid mass along the line of sight between us and the LMC and thus a larger optical depth. However, shifting the spheroid center leads to an effect that goes in the other direction: the best fit to the spheroid center is_away_ from the line of sight to the LMC. As a consequence, these two effects tend to cancel so that the change in optical depth due to the Newberg/Yanny triaxial halo is at most 50%. After subtracting the spheroid contribution in the four models we consider, the MACHO contribution (central value) to the mass of the Galactic Halo varies from \~(8-20)% if all excess lensing events observed by the MACHO collaboration are assumed to be due to MACHOs. Here the maximum is due to the original MACHO collaboration results and the minimum is consistent with 0% at the 1 sigma error level in the data.Comment: 26 pages, 2 figures. v2: minor revisions. v3: expanded discussion of the local spheroid density and minor revisions to match version published in Journal of Cosmology and Astroparticle Physics (JCAP

    PHOENIX model chromospheres of mid- to late-type M dwarfs

    Full text link
    We present semi-empirical model chromospheres computed with the atmosphere code PHOENIX. The models are designed to fit the observed spectra of five mid- to late-type M dwarfs. Next to hydrogen lines from the Balmer series we used various metal lines, e. g. from Fe {\sc i}, for the comparison between data and models. Our computations show that an NLTE treatment of C, N, O impacts on the hydrogen line formation, while NLTE treatment of less abundant metals such as nickel influences the lines of the considered species itself. For our coolest models we investigated also the influence of dust on the chromospheres and found that dust increases the emission line flux. Moreover we present an (electronically published) emission line list for the spectral range of 3100 to 3900 and 4700 to 6800 \AA for a set of 21 M dwarfs and brown dwarfs. The line list includes the detection of the Na {\sc i} D lines in emission for a L3 dwarf.Comment: 14 pages, 18 figure
    corecore