1,251 research outputs found

    The Effects of Turbulence on Three-Dimensional Magnetic Reconnection at the Magnetopause

    Get PDF
    Two- and three-dimensional particle-in-cell simulations of a recent encounter of the Magnetospheric Multiscale Mission (MMS) with an electron diffusion region at the magnetopause are presented. While the two-dimensional simulation is laminar, turbulence develops at both the x-line and along the magnetic separatrices in the three-dimensional simulation. The turbulence is strong enough to make the magnetic field around the reconnection island chaotic and produces both anomalous resistivity and anomalous viscosity. Each contribute significantly to breaking the frozen-in condition in the electron diffusion region. A surprise is that the crescent-shaped features in velocity space seen both in MMS observations and in two-dimensional simulations survive, even in the turbulent environment of the three-dimensional system. This suggests that MMS's measurements of crescent distributions do not exclude the possibility that turbulence plays an important role in magnetopause reconnection.Comment: Revised version accepted by GR

    An experimental study of transonic flow about a supercritical airfoil

    Get PDF
    A series of experiments was conducted on flow fields about two airfoil models whose sections are slight modifications of the original Whitcomb supercritical airfoil section. Data obtained include surface static-pressure distributions, far-wake surveys, oil-flow photographs, pitot-pressure surveys in the viscous regions, and holographic interferograms. These data were obtained for different combinations of lift coefficient and free-stream Mach number, which included both subcritical cases and flows with upper-surface shock waves. The availability of both pitot-pressure data and density data from interferograms allowed determination of flow-field properties in the vicinity of the trailing edge and in the wake without recourse to any assumptions about the local static pressure. The data show that significant static-pressure gradients normal to viscous layers exist in this region, and that they persist to approximately 10% chord downstream of the trailing edge. Comparisons are made between measured boundary-layer properties and results from boundary-layer computations that employed measured static-pressure distributions, as well as comparisons between data and results of airfoil flow-field computations

    An experimental study of transonic flow about a supercritical airfoil. Static pressure and drag data obtained from tests of a supercritical airfoil and an NACA 0012 airfoil at transonic speeds, supplement

    Get PDF
    Surface static-pressure and drag data obtained from tests of two slightly modified versions of the original NASA Whitcomb airfoil and a model of the NACA 0012 airfoil section are presented. Data for the supercritical airfoil were obtained for a free-stream Mach number range of 0.5 to 0.9, and a chord Reynolds number range of 2 x 10 to the 6th power to 4 x 10 to the 6th power. The NACA 0012 airfoil was tested at a constant chord Reynolds number of 2 x 10 to the 6th power and a free-stream Mach number range of 0.6 to 0.8

    The Effects Of Turbulence On Three-Dimensional Magnetic Reconnection At The Magnetopause

    Get PDF
    Two- and three-dimensional particle-in-cell simulations of a recent encounter of the Magnetospheric Multiscale Mission (MMS) with an electron diffusion region at the magnetopause are presented. While the two-dimensional simulation is laminar, turbulence develops at both the x-line and along the magnetic separatrices in the three-dimensional simulation. The turbulence is strong enough to make the magnetic field around the reconnection island chaotic and produces both anomalous resistivity and anomalous viscosity. Each contribute significantly to breaking the frozen-in condition in the electron diffusion region. A surprise is that the crescent-shaped features in velocity space seen both in MMS observations and in two-dimensional simulations survive, even in the turbulent environment of the three-dimensional system. This suggests that MMS\u27s measurements of crescent distributions do not exclude the possibility that turbulence plays an important role in magnetopause reconnection

    Synthetic biodegradable hydrogel delivery of demineralized bone matrix for bone augmentation in a rat model

    Get PDF
    There exists a strong clinical need for a more capable and robust method to achieve bone augmentation, and a system with fine-tuned delivery of demineralized bone matrix (DBM) has the potential to meet that need. As such, the objective of the present study was to investigate a synthetic biodegradable hydrogel for the delivery of DBM for bone augmentation in a rat model. Oligo(poly(ethylene glycol) fumarate) (OPF) constructs were designed and fabricated by varying the content of rat-derived DBM particles (either 1:3, 1:1 or 3:1 DBM:OPF weight ratio on a dry basis) and using two DBM particle size ranges (50–150 or 150–250 μm). The physical properties of the constructs and the bioactivity of the DBM were evaluated. Selected formulations (1:1 and 3:1 with 50–150 μm DBM) were evaluated in vivo compared to an empty control to investigate the effect of DBM dose and construct properties on bone augmentation. Overall, 3:1 constructs with higher DBM content achieved the greatest volume of bone augmentation, exceeding 1:1 constructs and empty implants by 3- and 5-fold, respectively. As such, we have established that a synthetic, biodegradable hydrogel can function as a carrier for DBM, and that the volume of bone augmentation achieved by the constructs correlates directly to the DBM dose

    Articular chondrocytes and mesenchymal stem cells seeded on biodegradable scaffolds for the repair of cartilage in a rat osteochondral defect model

    Get PDF
    This work investigated the ability of co-cultures of articular chondrocytes and mesenchymal stem cells (MSCs) to repair articular cartilage in osteochondral defects. Bovine articular chondrocytes and rat MSCs were seeded in isolation or in co-culture onto electrospun poly(ɛ-caprolactone) (PCL) scaffolds and implanted into an osteochondral defect in the trochlear groove of 12-week old Lewis rats. Additionally, a blank PCL scaffold and untreated defect were investigated. After 12 weeks, the extent of cartilage repair was analyzed through histological analysis, and the extent of bone healing was assessed by quantifying the total volume of mineralized bone in the defect through microcomputed tomography. Histological analysis revealed that the articular chondrocytes and co-cultures led to repair tissue that consisted of more hyaline-like cartilage tissue that was thicker and possessed more intense Safranin O staining. The MSC, blank PCL scaffold, and empty treatment groups generally led to the formation of fibrocartilage repair tissue. Microcomputed tomography revealed that while there was an equivalent amount of mineralized bone formation in the MSC, blank PCL, and empty treatment groups, the defects treated with chondrocytes or co-cultures had negligible mineralized bone formation. Overall, even with a reduced number of chondrocytes, co-cultures led to an equal level of cartilage repair compared to the chondrocyte samples, thus demonstrating the potential for the use of co-cultures of articular chondrocytes and MSCs for the in vivo repair of cartilage defects

    BIOHYBRID – Biohybrid templates for peripheral nerve regeneration

    Get PDF
    [Excerpt] Peripheral nerve injuries represent a major cause for morbidity and disability in affected patients and cause substantial costs for society in a global perspective. It has been estimated that peripheral nerve injuries affect 2.8% of trauma patients,many of whom acquire life-long disability (Noble et al., 1998). With respect to an incidence of nerve injuries of 13.9/100,000 inhabitants per year (Asplund et al., 2009) and the number of inhabitants in the EU (495,000,000 inhabitants in 2007), the number of peripheral nerve injuries requiring repair and reconstruction, excluding nerve injuries by amputations, may be 70,000 annually only in EU countries. Related to peripheral nerve injuries, the costs for society are substantial and consist of direct (costs for surgery, outpatient visits and rehabilitation) and indirect (lost production) costs. Individual median and ulnar nerve injuries in the forearm have total costs of EUR 51,000 and 31,000, respectively, where around 85% of the costs consist of loss of production (Rosberg et al., 2005), still excluding costs for adjusted quality of life ( Eriksson et al., 2011) . Thus, one may estimate that the annual costs only in the EU may be as high as EUR 2.2 billion, indicating that improved treatment strategies for peripheral nerve injuries may not only improve the situation for patients, but may also significantly reduce costs for society. [...](undefined

    A systematic review investigating fatigue, psychological and cognitive impairment following TIA and minor stroke:protocol paper

    Get PDF
    Approximately 20,000 people have a transient ischemic attack (TIA) and 23,375 have a minor stroke in England each year. Fatigue, psychological and cognitive impairments are well documented post-stroke. Evidence suggests that TIA and minor stroke patients also experience these impairments; however, they are not routinely offered relevant treatment. This systematic review aims to: (1) establish the prevalence of fatigue, anxiety, depression, post-traumatic stress disorder (PTSD) and cognitive impairment following TIA and minor stroke and to investigate the temporal course of these impairments; (2) explore impact on quality of life (QoL), change in emotions and return to work; (3) identify where further research is required and to potentially inform an intervention study
    corecore