57 research outputs found

    Postcopulatory sexual selection

    Get PDF
    The female reproductive tract is where competition between the sperm of different males takes place, aided and abetted by the female herself. Intense postcopulatory sexual selection fosters inter-sexual conflict and drives rapid evolutionary change to generate a startling diversity of morphological, behavioural and physiological adaptations. We identify three main issues that should be resolved to advance our understanding of postcopulatory sexual selection. We need to determine the genetic basis of different male fertility traits and female traits that mediate sperm selection; identify the genes or genomic regions that control these traits; and establish the coevolutionary trajectory of sexes

    How Does Spatial Study Design Influence Density Estimates from Spatial Capture-Recapture Models?

    Get PDF
    When estimating population density from data collected on non-invasive detector arrays, recently developed spatial capture-recapture (SCR) models present an advance over non-spatial models by accounting for individual movement. While these models should be more robust to changes in trapping designs, they have not been well tested. Here we investigate how the spatial arrangement and size of the trapping array influence parameter estimates for SCR models. We analysed black bear data collected with 123 hair snares with an SCR model accounting for differences in detection and movement between sexes and across the trapping occasions. To see how the size of the trap array and trap dispersion influence parameter estimates, we repeated analysis for data from subsets of traps: 50% chosen at random, 50% in the centre of the array and 20% in the South of the array. Additionally, we simulated and analysed data under a suite of trap designs and home range sizes. In the black bear study, we found that results were similar across trap arrays, except when only 20% of the array was used. Black bear density was approximately 10 individuals per 100 km2. Our simulation study showed that SCR models performed well as long as the extent of the trap array was similar to or larger than the extent of individual movement during the study period, and movement was at least half the distance between traps. SCR models performed well across a range of spatial trap setups and animal movements. Contrary to non-spatial capture-recapture models, they do not require the trapping grid to cover an area several times the average home range of the studied species. This renders SCR models more appropriate for the study of wide-ranging mammals and more flexible to design studies targeting multiple species

    Despotism and Risk of Infanticide Influence Grizzly Bear Den-Site Selection

    Get PDF
    Given documented social dominance and intraspecific predation in bear populations, the ideal despotic distribution model and sex hypothesis of sexual segregation predict adult female grizzly bears (Ursus arctos) will avoid areas occupied by adult males to reduce risk of infanticide. Under ideal despotic distribution, juveniles should similarly avoid adult males to reduce predation risk. Den-site selection and use is an important component of grizzly bear ecology and may be influenced by multiple factors, including risk from conspecifics. To test the role of predation risk and the sex hypothesis of sexual segregation, we compared adult female (n = 142), adult male (n = 36), and juvenile (n = 35) den locations in Denali National Park and Preserve, Alaska, USA. We measured elevation, aspect, slope, and dominant land cover for each den site, and used maximum entropy modeling to determine which variables best predicted den sites. We identified the global model as the best-fitting model for adult female (area under curve (AUC) = 0.926) and elevation as the best predictive variable for adult male (AUC = 0.880) den sites. The model containing land cover and elevation best-predicted juvenile (AUC = 0.841) den sites. Adult females spatially segregated from adult males, with dens characterized by higher elevations ( = 1,412 m, SE = 52) and steeper slopes ( = 21.9°, SE = 1.1) than adult male (elevation:  = 1,209 m, SE = 76; slope:  = 15.6°, SE = 1.9) den sites. Juveniles used a broad range of landscape attributes but did not avoid adult male denning areas. Observed spatial segregation by adult females supports the sex hypothesis of sexual segregation and we suggest is a mechanism to reduce risk of infanticide. Den site selection of adult males is likely related to distribution of food resources during spring

    Surveying the Down syndrome mouse model resource identifies critical regions responsible for chronic otitis media

    Get PDF
    Chronic otitis media (OM) is common in Down syndrome (DS), but underlying aetiology is unclear. We analysed the entire available mouse resource of partial trisomy models of DS looking for histological evidence of chronic middle-ear inflammation. We found a highly penetrant OM in the Dp(16)1Yey mouse, which carries a complete trisomy of MMU16. No OM was found in the Dp(17)1Yey mouse or the Dp(10)1Yey mouse, suggesting disease loci are located only on MMU16. The Ts1Cje, Ts1RhR, Ts2Yah, and Ts65Dn trisomies and the transchomosomic Tc1 mouse did not develop OM. On the basis of these findings, we propose a two-locus model for chronic middle-ear inflammation in DS, based upon epistasis of the regions of HSA21 not in trisomy in the Tc1 mouse. We also conclude that environmental factors likely play an important role in disease onset

    Not Available

    No full text
    Not AvailablePiscine orthoreovirus (PRV-1) can cause heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar). The virus targets erythrocytes in the acute peak phase, followed by cardiomyocytes, before the infection subsides into persistence. The persistent phase is characterized by high level of viral RNA, but low level of viral protein. The origin and nature of persistent PRV-1 are not clear. Here, we analyzed for viral persistence and activity in various tissues and cell types in experimentally infected Atlantic salmon. Plasma contained PRV-1 genomic dsRNA throughout an 18-week long infection trial, indicating that viral particles are continuously produced and released. The highest level of PRV-1 RNA in the persistent phase was found in kidney. The level of PRV-1 ssRNA transcripts in kidney was significantly higher than that of blood cells in the persistent phase. In-situ hybridization assays confirmed that PRV-1 RNA was present in erythroid progenitor cells, erythrocytes, macrophages, melano-macrophages and in some additional un-characterized cells in kidney. These results show that PRV-1 establishes a productive, persistent infection in Atlantic salmon and that erythrocyte progenitor cells are PRV target cells.Not Availabl

    Not Available

    No full text
    Not AvailableHeart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar) was first diagnosed in Norway in 1999. The disease is caused by Piscine orthoreovirus-1 (PRV-1). The virus is prevalent in farmed Atlantic salmon, but not always associated with disease. Phylogeny and sequence analyses of 31 PRV-1 genomes collected over a 30-year period from fish with or without HSMI, grouped the viral sequences into two main monophylogenetic clusters, one associated with HSMI and the other with low virulent PRV-1 isolates. A PRV-1 strain from Norway sampled in 1988, a decade before the emergence of HSMI, grouped with the low virulent HSMI cluster. The two distinct monophylogenetic clusters were particularly evident for segments S1 and M2. Only a limited number of amino acids were unique to the association with HSMI, and they all located to S1 and M2 encoded proteins. The observed co-evolution of the S1-M2 pair coincided in time with the emergence of HSMI in Norway, and may have evolved through accumulation of mutations and/or segment reassortment. Sequences of S1-M2 suggest selection of the HSMI associated pair, and that this segment pair has remained almost unchanged in Norwegian salmon aquaculture since 1997. PRV-1 strains from the North American Pacific Coast and Faroe Islands have not undergone this evolution, and are more closely related to the PRV-1 precursor strains not associated with clinical HSMI.Not Availabl

    Energy landscapes shape microbial communities in hydrothermal systems on the Arctic Mid-Ocean Ridge

    Get PDF
    Methods developed in geochemical modelling combined with recent advances in molecular microbial ecology provide new opportunities to explore how microbial communities are shaped by their chemical surroundings. Here, we present a framework for analyses of how chemical energy availability shape chemotrophic microbial communities in hydrothermal systems through an investigation of two geochemically different basalt-hosted hydrothermal systems on the Arctic Mid-Ocean Ridge: the Soria Moria Vent field (SMVF) and the Loki’s Castle Vent Field (LCVF). Chemical energy landscapes were evaluated through modelling of the Gibbs energy from selected redox reactions under different mixing ratios between seawater and hydrothermal fluids. Our models indicate that the sediment-influenced LCVF has a much higher potential for both anaerobic and aerobic methane oxidation, as well as aerobic ammonium and hydrogen oxidation, than the SMVF. The modelled energy landscapes were used to develop microbial community composition models, which were compared with community compositions in environmental samples inside or on the exterior of hydrothermal chimneys, as assessed by pyrosequencing of partial 16S rRNA genes. We show that modelled microbial communities based solely on thermodynamic considerations can have a high predictive power and provide a framework for analyses of the link between energy availability and microbial community composition
    corecore