922 research outputs found

    Constraining the metallicities, ages, star formation histories, and ionizing continua of extragalactic massive star populations

    Full text link
    We infer the properties of massive star populations using the far-ultraviolet stellar continua of 61 star-forming galaxies: 42 at low-z observed with HST and 19 at z~2 from the Megasaura sample. We fit each stellar continuum with a linear combination of up to 50 single age and single metallicity Starburst99 models. From these fits, we derive light-weighted ages and metallicities, which agree with stellar wind and photospheric spectral features, and infer the spectral shapes and strengths of the ionizing continua. Inferred light-weighted stellar metallicities span 0.05-1.5 Z_\odot and are similar to the measured nebular metallicities. We quantify the ionizing continua using the ratio of the ionizing flux at 900\AA\ to the non-ionizing flux at 1500\AA\ and demonstrate the evolution of this ratio with stellar age and metallicity using theoretical single burst models. These single burst models only match the inferred ionizing continua of half of the sample, while the other half are described by a mixture of stellar ages. Mixed age populations produce stronger and harder ionizing spectra than continuous star formation histories, but, contrary to previous studies that assume constant star formation, have similar stellar and nebular metallicities. Stellar population age and metallicity affect the far-UV continua in different and distinguishable ways; assuming a constant star formation history diminishes the diagnostic power. Finally, we provide simple prescriptions to determine the ionizing photon production efficiency (ξion\xi_{ion}) from the stellar population properties. ξion\xi_{ion} has a range of log(ξion)=24.425.7\xi_{ion})=24.4-25.7 Hz erg1^{-1} that depends on stellar age, metallicity, star formation history, and contributions from binary star evolution. These stellar population properties must be observationally determined to determine the number of ionizing photons generated by massive stars.Comment: 31 pages, 23 figures, resubmitted to ApJ after incorporating the referee's comments. Comments encourage

    Accurately predicting the escape fraction of ionizing photons using restframe ultraviolet absorption lines

    Get PDF
    The fraction of ionizing photons that escape high-redshift galaxies sensitively determines whether galaxies reionized the early universe. However, this escape fraction cannot be measured from high-redshift galaxies because the opacity of the intergalactic medium is large at high redshifts. Without methods to indirectly measure the escape fraction of high-redshift galaxies, it is unlikely that we will know what reionized the universe. Here, we analyze the far-ultraviolet (UV) H I (Lyman series) and low-ionization metal absorption lines of nine low-redshift, confirmed Lyman continuum emitting galaxies. We use the H I covering fractions, column densities, and dust attenuations measured in a companion paper to predict the escape fraction of ionizing photons. We find good agreement between the predicted and observed Lyman continuum escape fractions (within 1.4σ1.4\sigma) using both the H I and ISM absorption lines. The ionizing photons escape through holes in the H I, but we show that dust attenuation reduces the fraction of photons that escape galaxies. This means that the average high-redshift galaxy likely emits more ionizing photons than low-redshift galaxies. Two other indirect methods accurately predict the escape fractions: the Lyα\alpha escape fraction and the optical [O III]/[O II] flux ratio. We use these indirect methods to predict the escape fraction of a sample of 21 galaxies with rest-frame UV spectra but without Lyman continuum observations. Many of these galaxies have low escape fractions (fesc1f_{\rm esc} \le 1\%), but 11 have escape fractions >1>1\%. The methods presented here will measure the escape fractions of high-redshift galaxies, enabling future telescopes to determine whether star-forming galaxies reionized the early universe.Comment: Accepted for publication in A&A. 12 pages, 5 figure

    Genetic diversity within and among Atlantic cod (Gadus morhua) farmed in marine cages: a proof-of-concept study for the identification of escapees

    Get PDF
    This study presents a molecular genetic characterization of Atlantic cod reared in commercial marine farms. Samples consisted of approximately 47 fish collected from nine cages located on four farms throughout Norway. In addition, 28 farmed escapees were recaptured in the sea (443 fish in total). Nine microsatellite loci and the Pan I gene were analysed, revealing a total of 181 alleles. Each sample contained 43–63% of total allelic variation. Comparing variation with published data for wild cod indicates that lower genetic variation exists within single cages than in wild populations. Significant linkage disequilibrium was observed amongst pairs of loci in all samples, suggesting a low number of contributing parental fish. Global FST was 0.049, and the highest pairwise FST value (pooled loci) was 0.085. For single loci, the Pan I gene was the most diagnostic, displaying a global FST of 0.203. Simulations amongst the samples collected on farms revealed an overall correct self-assignment percentage of 75%, demonstrating a high probability of identifying individuals to their farm of origin. Identification of the 28 escapees revealed a single cage as the most likely source of origin for half of the escapees, whilst the remaining fish were assigned to a mixture of samples, suggesting more than one source of escapees

    Nucleation and Growth Dynamics of the α-Al / β-Al5FeSi Eutectic in a Complex Al-Si-Cu-Fe Alloy

    Get PDF
    Secondary-sourced recycled aluminium alloys can exhibit high levels of different impurities. It is well known that the presence of iron, the most common impurity, can lead to the formation of hard and brittle intermetallic phases which are detrimental to the machining properties and the mechanical behaviour of the material in service. The purpose of this work is to study the nucleation and growth of the β-Al5FeSi intermetallic phase in the framework of the eutectic reaction: Liquid → α-Al + β-Al5FeSi. In situ X-ray microtomography has been used to investigate the formation of the irregular eutectic β-phase plates during the solidification at low cooling rate of an Al-8Si-4Cu-0.8Fe alloy. The results show that only a few plates form, nucleating early near the sample surface. Next, growth occurs very rapidly in the principal growth direction and slowly in the thickness direction. The plates are highly branched and appear to form as a divorced eutectic, i.e. not coupled with the α-Al. These features are inconsistent with the common irregular eutectic solidification theory based on the Jackson and Hunt model

    The Burst Cluster: Dark Matter in a Cluster Merger Associated with the Short Gamma Ray Burst, GRB 050509B

    Get PDF
    We have identified a merging galaxy cluster with evidence of two distinct sub-clusters. The X-ray and optical data suggest that the subclusters are moving away from each other after closest approach. This cluster merger was discovered from observations of the well localized short-duration gamma-ray burst (GRB), GRB 050509B. The Swift/Burst Alert Telescope (BAT) source position is coincident with a cluster of galaxies ZwCl 1234.0+02916. The subsequent Swift/X-Ray Telescope (XRT) localization of the X-ray afterglow found the GRB coincident with 2MASX J12361286+2858580, a giant red elliptical galaxy in the cluster. Deep multi-epoch optical images were obtained to constrain the evolution of the GRB afterglow, including a 27480s exposure in the F814W band with Hubble Space Telescope Advanced Camera for Surveys (ACS), among the deepest imaging ever obtained towards a known galaxy cluster in a single passband. We perform a weak gravitational lensing analysis, including mapping the total mass distribution of the merger system. Combined with Chandra X-ray Observatory and Swift/XRT observations, we investigate the dynamical state of the merger to probe the nature of the dark matter component. Our weak gravitational lensing measurements reveal a separation of the X-ray centroid of the western subcluster from the center of the mass and galaxy light distributions, similar to that of the famous "Bullet cluster". We conclude that the "Burst cluster" is another candidate merger system for determining the nature of dark matter and for studying the environment of short GRBs. We discuss connections between the cluster dynamical state and/or matter composition and compact object mergers, the leading model for the origin of short GRBs. Finally, we present results from a weak lensing survey based on archival Very Large Telescope (VLT) images in the areas of 5 other short GRBs.Comment: 17 pages, 7 figures, accepted by Ap

    Separating the BL Lac and Cluster X-ray Emissions in Abell 689 with Chandra

    Full text link
    We present the results of a Chandra observation of the galaxy cluster Abell 689 (z=0.279). Abell 689 is one of the most luminous clusters detected in the ROSAT All Sky Survey (RASS), but was flagged as possibly including significant point source contamination. The small PSF of the Chandra telescope allows us to confirm this and separate the point source from the extended cluster X-ray emission. For the cluster we determine a bolometric luminosity of L_{bol}=(3.3+/-0.3)x10^{44} erg s-1 and a temperature of kT=5.1^{+2.2}_{-1.3} keV when including a physically motivated background model. We compare our measured luminosity for A689 to that quoted in the Rosat All Sky Survey (RASS) and find L_{0.1-2.4,keV}=2.8x10^{44} erg s-1, a value \sim10 times lower than the ROSAT measurement. Our analysis of the point source shows evidence for significant pileup, with a pile-up fraction of ~60%. SDSS spectra and HST images lead us to the conclusion that the point source within Abell 689 is a BL Lac object. Using radio and optical observations from the VLA and HST archives, we determine {\alpha}_{ro}=0.50, {\alpha}_{ox}=0.77 and {\alpha}_{rx}=0.58 for the BL Lac, which would classify it as being of 'High-energy peak BL Lac' (HBL) type. Spectra extracted of A689 show a hard X-ray excess at energies above 6 keV that we interpret as inverse Compton emission from aged electrons that may have been transported into the cluster from the BL Lac.Comment: 11 pages, 15 figures, MNRAS in pres

    Study of heterogeneous nucleation of eutectic Si in high-purity Al-Si alloys with Sr addition

    Get PDF
    The official published version can be accessed from the link below - Copyright @ 2010 The Minerals, Metals & Materials Society and ASM InternationalAl-5 wt pct Si master-alloys with controlled Sr and/or P addition/s were produced using super purity Al 99.99 wt pct and Si 99.999 wt pct materials in an arc melter. The master-alloy was melt-spun resulting in the production of thin ribbons. The Al matrix of the ribbons contained entrained Al-Si eutectic droplets that were subsequently investigated. Differential scanning calorimetry, thermodynamic calculations, and transmission electron microscopy techniques were employed to examine the effect of the Sr and P additions on eutectic undercoolings and nucleation phenomenon. Results indicate that, unlike P, Sr does not promote nucleation. Increasing Sr additions depressed the eutectic nucleation temperature. This may be a result of the formation of a Sr phase that could consume or detrimentally affect potent AlP nucleation sites.This work is financially supported by the Higher Education Commission of Pakistan and managerially supported from the OAD

    The evolution of substructure II: linking dynamics to environment

    Full text link
    We present results from a series of high-resolution N-body simulations that focus on the formation and evolution of eight dark matter halos, each of order a million particles within the virial radius. We follow the time evolution of hundreds of satellite galaxies with unprecedented time resolution, relating their physical properties to the differing halo environmental conditions. The self-consistent cosmological framework in which our analysis was undertaken allows us to explore satellite disruption within live host potentials, a natural complement to earlier work conducted within static potentials. Our host halos were chosen to sample a variety of formation histories, ages, and triaxialities; despite their obvious differences, we find striking similarities within the associated substructure populations. Namely, all satellite orbits follow nearly the same eccentricity distribution with a correlation between eccentricity and pericentre. We also find that the destruction rate of the substructure population is nearly independent of the mass, age, and triaxiality of the host halo. There are, however, subtle differences in the velocity anisotropy of the satellite distribution. We find that the local velocity bias at all radii is greater than unity for all halos and this increases as we move closer to the halo centre, where it varies from 1.1 to 1.4. For the global velocity bias we find a small but slightly positive bias, although when we restrict the global velocity bias calculation to satellites that have had at least one orbit, the bias is essentially removed.Comment: 14 pages, 14 figures, MNRAS in pres

    Annihilation of NMSSM neutralinos in the Sun and neutrino telescope limits

    Full text link
    We investigate neutralino dark matter in the framework of NMSSM performing a scan over its parameter space and calculating neutralino capture and annihilation rates in the Sun. We discuss the prospects of searches for neutralino dark matter in neutrino experiments depending on neutralino content and its main annihilation channel. We recalculate the upper limits on neutralino-proton elastic cross sections directly from neutrino telescopes upper bounds on annihilation rates in the Sun. This procedure has advantages as compared with corresponding recalcalations from the limits on muon flux, namely, it is independent on details of the experiment and the recalculation coefficients are universal for any kind of WIMP dark matter models. We derive 90% c.l. upper limits on neutralino-proton cross sections from the results of the Baksan Underground Scintillator Telescope.Comment: 28 pages, 16 figures, accepted for publication in JCAP, references adde
    corecore