60 research outputs found

    Structural Insight into Epitopes in the Pregnancy-Associated Malaria Protein VAR2CSA

    Get PDF
    Pregnancy-associated malaria is caused by Plasmodium falciparum malaria parasites binding specifically to chondroitin sulfate A in the placenta. This sequestration of parasites is a major cause of low birth weight in infants and anemia in the mothers. VAR2CSA, a polymorphic multi-domain protein of the PfEMP1 family, is the main parasite ligand for CSA binding, and identification of protective antibody epitopes is essential for VAR2CSA vaccine development. Attempts to determine the crystallographic structures of VAR2CSA or its domains have not been successful yet. In this study, we propose 3D models for each of the VAR2CSA DBL domains and we show that regions in the fold of VAR2CSA inter-domain 2 and a PfEMP1 CIDR domain seem to be homologous to the EBA-175 and Pkα-DBL fold. This suggests that ID2 could be a functional domain. We also identify regions of VAR2CSA present on the surface of native VAR2CSA by comparing reactivity of plasma containing anti-VAR2CSA antibodies in peptide array experiments before and after incubation with native VAR2CSA. By this method we identify conserved VAR2CSA regions targeted by antibodies that react with the native molecule expressed on infected erythrocytes. By mapping the data onto the DBL models we present evidence suggesting that the S1+S2 DBL sub-domains are generally surface-exposed in most domains, whereas the S3 sub-domains are less exposed in native VAR2CSA. These results comprise an important step towards understanding the structure of VAR2CSA on the surface of CSA-binding infected erythrocytes

    Identification of glycosaminoglycan binding regions in the Plasmodium falciparum encoded placental sequestration ligand, VAR2CSA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pregnancy malaria is caused by <it>Plasmodium falciparum</it>-infected erythrocytes binding the placental receptor chondroitin sulfate A (CSA). This results in accumulation of parasites in the placenta with severe clinical consequences for the mother and her unborn child. Women become resistant to placental malaria as antibodies are acquired which specifically target the surface of infected erythrocytes binding in the placenta. VAR2CSA is most likely the parasite-encoded protein which mediates binding to the placental receptor CSA. Several domains have been shown to bind CSA <it>in vitro</it>; and it is apparent that a VAR2CSA-based vaccine cannot accommodate all the CSA binding domains and serovariants. It is thus of high priority to define minimal ligand binding regions throughout the VAR2CSA molecule.</p> <p>Methods</p> <p>To define minimal CSA-binding regions/peptides of VAR2CSA, a phage display library based on the entire <it>var2csa </it>coding region was constructed. This library was screened on immobilized CSA and cells expressing CSA resulting in a limited number of CSA-binding phages. Antibodies against these peptides were affinity purified and tested for reactivity against CSA-binding infected erythrocytes.</p> <p>Results</p> <p>The most frequently identified phages expressed peptides residing in the parts of VAR2CSA previously defined as CSA binding. In addition, most of the binding regions mapped to surface-exposed parts of VAR2CSA. The binding of a DBL2X peptide to CSA was confirmed with a synthetic peptide. Antibodies against a CSA-binding DBL2X peptide reacted with the surface of infected erythrocytes indicating that this epitope is accessible for antibodies on native VAR2CSA on infected erythrocytes.</p> <p>Conclusion</p> <p>Short continuous regions of VAR2CSA with affinity for multiple types of CSA were defined. A number of these regions localize to CSA-binding domains and to surface-exposed regions within these domains and a synthetic peptide corresponding to a peptide sequence in DBL2 was shown to bind to CSA and not to CSC. It is likely that some of these epitopes are involved in native parasite CSA adhesion. However, antibodies directed against single epitopes did not inhibit parasite adhesion. This study supports phage display as a technique to identify CSA-binding regions of large proteins such as VAR2CSA.</p

    Differential Induction of Functional IgG Using the Plasmodium falciparum Placental Malaria Vaccine Candidate VAR2CSA

    Get PDF
    BACKGROUND: In Plasmodium falciparum malaria endemic areas placental malaria (PM) is an important complication of malaria. The recurrence of malaria in primigravidae women irrespective of acquired protection during childhood is caused by the interaction between the parasite-expressed VAR2CSA antigen and chondroitin sulfate A (CSA) in the placental intervillous space and lack of protective antibodies. PM impairs fetal development mainly by excessive inflammation processes. After infections during pregnancy women acquire immunity to PM conferred by antibodies against VAR2CSA. Ideally, a vaccine against PM will induce antibody-mediated immune responses that block the adhesion of infected erythrocytes (IE) in the placenta. PRINCIPAL FINDINGS: We have previously shown that antibodies raised in rat against individual domains of VAR2CSA can block IE binding to CSA. In this study we have immunized mice, rats and rabbits with each individual domain and the full-length protein corresponding to the FCR3 VAR2CSA variant. We found there is an inherently higher immunogenicity of C-terminal domains compared to N-terminally located domains. This was irrespective of whether antibodies were induced against single domains or the full-length protein. Species-specific antibody responses were also found, these were mainly directed against single domains and not the full-length VAR2CSA protein. CONCLUSIONS/SIGNIFICANCE: Binding inhibitory antibodies appeared to be against conformational B-cell epitopes. Non-binding inhibitory antibodies reacted highly against the C-terminal end of the VAR2CSA molecule especially the highly polymorphic DBL6ε domain. Differential species-specific induction of antibody responses may allow for more direct analysis of functional versus non-functional B-cell epitopes

    Several domains from VAR2CSA can induce Plasmodium falciparum adhesion-blocking antibodies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria caused by <it>Plasmodium falciparum </it>can result in several different syndromes with severe clinical consequences for the about 200 million individuals infected each year. During pregnancy, women living in endemic areas become susceptible to malaria due to lack of antibodies against a unique <it>P. falciparum </it>membrane protein, named VAR2CSA. This antigen is not expressed in childhood infections, since it binds chondroitin sulphate A (CSA) expressed on the intervillous space in the placenta. A vaccine appears possible because women acquire protective antibodies hindering sequestration in the placenta as a function of parity. A challenge for vaccine development is to design small constructs of this large antigen, which can induce broadly protective antibodies. It has previously been shown that one domain of VAR2CSA, DBL4-FCR3, induces parasite adhesion-blocking antibodies. In this study, it is demonstrated that other domains of VAR2CSA also can induce antibodies with inhibitory activity.</p> <p>Methods</p> <p>All VAR2CSA domains from the 3D7 and HB3 parasites were produced in <it>Baculovirus</it>-transfected insect cells. Groups of three rats per protein were immunized and anti-sera were tested for surface reactivity against infected erythrocytes expressing FCR3 VAR2CSA and for the ability to inhibit FCR3CSA parasite adhesion to CSA. The fine specificity of the immune sera was analysed by VAR2CSA peptide arrays.</p> <p>Results</p> <p>Inhibitory antibodies were induced by immunization with DBL3-HB3 T1 and DBL1-3D7. However, unlike the previously characterised DBL4-FCR3 response the inhibitory response against DBL1-3D7 and DBL3-HB3 T1 was poorly reproduced in the second rounds of immunizations.</p> <p>Conclusion</p> <p>It is possible to induce parasite adhesion-blocking antibodies when immunizing with a number of different VAR2CSA domains. This indicates that the CSA binding site in VAR2CSA is comprised of epitopes from different domains.</p

    Epitope Mapping and Topographic Analysis of VAR2CSA DBL3X Involved in P. falciparum Placental Sequestration

    Get PDF
    Pregnancy-associated malaria is a major health problem, which mainly affects primigravidae living in malaria endemic areas. The syndrome is precipitated by accumulation of infected erythrocytes in placental tissue through an interaction between chondroitin sulphate A on syncytiotrophoblasts and a parasite-encoded protein on the surface of infected erythrocytes, believed to be VAR2CSA. VAR2CSA is a polymorphic protein of approximately 3,000 amino acids forming six Duffy-binding-like (DBL) domains. For vaccine development it is important to define the antigenic targets for protective antibodies and to characterize the consequences of sequence variation. In this study, we used a combination of in silico tools, peptide arrays, and structural modeling to show that sequence variation mainly occurs in regions under strong diversifying selection, predicted to form flexible loops. These regions are the main targets of naturally acquired immunoglobulin gamma and accessible for antibodies reacting with native VAR2CSA on infected erythrocytes. Interestingly, surface reactive anti-VAR2CSA antibodies also target a conserved DBL3X region predicted to form an α-helix. Finally, we could identify DBL3X sequence motifs that were more likely to occur in parasites isolated from primi- and multigravidae, respectively. These findings strengthen the vaccine candidacy of VAR2CSA and will be important for choosing epitopes and variants of DBL3X to be included in a vaccine protecting women against pregnancy-associated malaria

    Changes in <it>var </it>gene mRNA levels during erythrocytic development in two phenotypically distinct <it>Plasmodium falciparum </it>parasites

    No full text
    Abstract Background The var multigene family encodes PfEMP1, which are expressed on the surface of infected erythrocytes and bind to various host endothelial receptors. Antigenic variation of PfEMP1 plays a key role in malaria pathogenesis, a process partially controlled at the level of var gene transcription. Transcriptional levels, throughout the intra-erythrocytic cycle, of 59 var genes of the NF54 clone were measured simultaneously by quantitative real-time PCR. The timing of var transcript abundance, the number of genes transcribed and whether transcripts were correctly spliced for protein expression were determined. Two parasite populations were studied; an unselected population of NF54 and a selected population, NF54VAR2CSA, to compare both the transcription of var2csa and the expression pattern of the corresponding protein. Methods Synchronized parasites were harvested at different time points along the 48 hours intra-erythrocytic cycle for extraction of RNA and for analysis of expression of variant surface antigens by flow cytometry. Total RNA from each parasite sample was extracted and cDNA synthesized. Quantitative real-time PCR was performed using gene-specific primers for all var genes. Samples for flow cytometry were labelled with rabbit IgG targeting DBL5ε of VAR2CSA and serum IgG from malaria-exposed men and pregnant women. Results var transcripts were detected at all time points of the intra-erythrocytic cycle by quantitative real-time PCR, although transcription peaked in ring-stage parasites. There was no difference in the timing of appearance of group A, B or C transcripts, and dominant and subdominant var transcripts appeared to be correctly spliced at all time points. VAR2CSA appeared on the surface of infected erythrocytes 16 hours after invasion, consistent with previous studies of other PfEMP1. Transcription of the pseudogene var1csa could not be detected in NF54VAR2CSA cells. Conclusion The optimal sampling point for analysis of var transcripts using quantitative real-time PCR is the ring-stage, which is encouraging for the analysis of fresh clinical isolates. The data presented here indicate that there is no promiscuous transcription of var genes at the individual cell level and that it is possible to correlate dominant transcripts with adhesion phenotype and clinical markers of malaria severity.</p
    corecore