821 research outputs found

    Dielectric behavior of semiconductors at microwave frequencies

    Get PDF
    A cylindrical microwave resonant cavity in TE(011) (Transverse Electric) mode is used to study the dielectric relaxation in germanium and silicon. The samples of these semiconductors are used to perturb the electric field in the cavity, and Slater's perturbation equations are used to calculate the real and imaginary parts of the dielectric constant. The dielectric loss of germanium and silicon is studied at different temperatures, and Debye's equations are used to calculate the relaxation time at these temperatures

    Towards Graphene Based Flexible Force Sensor

    Get PDF
    Monolayer graphene transferred over flexible polyvinyl chloride (PVC) substrate combined with closely packed layer of nano-spheres (NSs) is fabricated for force sensing application. The force was applied from vertical direction through NSs which acts as lateral strain enhancers. The stack persuades lateral in-plane strain in the monolayer graphene for the applied vertical pressure through NSs. The electrical measurements demonstrate that the graphene layer is able to respond for soft touch range commonly perceived by human beings. The sensing stack was fabricated using simple approaches such as hot lamination graphene transfer process and drop casting of NSs. The device structure is flexible to conformably cover the nonplanar surface for applications such as large area pressure sensing and robotic e-skin

    Magnetic moments of the low-lying JP=1/2J^P=\,1/2^-, 3/23/2^- Λ\Lambda resonances within the framework of the chiral quark model

    Full text link
    The magnetic moments of the low-lying spin-parity JP=J^P= 1/21/2^-, 3/23/2^- Λ\Lambda resonances, like, for example, Λ(1405)\Lambda(1405) 1/21/2^-, Λ(1520)\Lambda(1520) 3/23/2^-, as well as their transition magnetic moments, are calculated using the chiral quark model. The results found are compared with those obtained from the nonrelativistic quark model and those of unitary chiral theories, where some of these states are generated through the dynamics of two hadron coupled channels and their unitarization

    Graphene Gold Nanoparticle Hybrid Based Near Infrared Photodetector

    Get PDF
    This paper presents novel and simplistic approach towards the development of graphene based near infrared (NIR) photodetectors. The developed device comprises of Au nanoparticles integrated within the channel of the back-gated graphene field effect transistors. The introduction of Au nanoparticles enhanced response of the device under IR illumination due improved NIR absorption. Further, dynamic response of the device under IR illumination is presented. This study will trigger the development of novel hybrid graphene device for graphene based photodetectors in IR regime

    Tuning Electrical Conductivity of CNT-PDMS Nanocomposites for Flexible Electronic Applications

    Get PDF
    This paper presents a study into the electrical conductivity of multi-wall carbon nanotube-polydimethylsiloxane (MWNT-PDMS) nanocomposite and their dependence on the filler concentration. It is observed that the electrical conductivity of the composites can be tailored by altering the filler concentration. Accordingly, the nanocomposites with filler weight ratio ranging from 1% to 8% were prepared and tested. Finally, the significance of results presented here for flexible pressure sensors and stretchable interconnects for electronic skin applications have been discussed

    Polarograms of 2'-Hydroxy-4',6'-dimethoxychalkone in Aqueous Ethanolic BR Buffers

    Get PDF
    754-75

    Dielectric measurements of selected ceramics at microwave frequencies

    Get PDF
    Dielectric measurements of strontium titanate and lead titanate zirconate ceramics are conducted at microwave frequencies using a cylindrical resonant cavity in the TE(sub 011) mode. The perturbations of the electric field are recorded in terms of the frequency shift and Q-changes of the cavity signal. Slater's perturbation equations are used to calculate e' and e" of the dielectric constant as a function of temperature and frequency

    Synthesis of Large Area Graphene for High Performance in Flexible Optoelectronic Devices

    Get PDF
    This work demonstrates an attractive low-cost route to obtain large area and high-quality graphene films by using the ultra-smooth copper foils which are typically used as the negative electrodes in lithium-ion batteries. We first compared the electronic transport properties of our new graphene film with the one synthesized by using commonly used standard copper foils in chemical vapor deposition (CVD). We observed a stark improvement in the electrical performance of the transistors realized on our graphene films. To study the optical properties on large area, we transferred CVD based graphene to transparent flexible substrates using hot lamination method and performed large area optical scanning. We demonstrate the promise of our high quality graphene films for large areas with ∼400 cm 2 flexible optical modulators. We obtained a profound light modulation over a broad spectrum by using the fabricated large area transparent graphene supercapacitors and we compared the performance of our devices with the one based on graphene from standard copper. We propose that the copper foils used in the lithium-ion batteries could be used to obtain high-quality graphene at much lower-cost, with the improved performance of electrical transport and optical properties in the devices made from them

    Superoxide dismutase analog (Tempol: 4-hydroxy-2, 2, 6, 6-tetramethylpiperidine 1-oxyl) treatment restores erectile function in diabetes-induced impotence.

    Get PDF
    We hypothesized that the administration of the superoxide dismutase (SOD) mimetic Tempol (4-hydroxy-2, 2, 6, 6-tetramethylpiperidine 1-oxyl) may reverse diabetes-induced erectile dysfunction. To test this hypothesis, reactive oxygen species-related genes (SOD1, SOD2, GP x 1, CAT, NOS2, NOS3) were tested, erectile functional studies and immunohistochemical analysis were carried out in diabetic rats treated with or without Tempol. Thirty Sprague-Dawley (3-4 months old) rats were divided into three groups (n=10 each), 20 with diabetes (diabetic control and Tempol treatment) and 10 healthy controls. At 12 weeks after the induction of diabetes by streptozotocin and Tempol treatment, all groups underwent in vivo cavernous nerve stimulation. Rat crura were harvested and the expression of antioxidative defense enzymes were examined by semi-quantitative reverse transcriptase PCR (RT-PCR). To confirm the RT-PCR results, we carried out immunohistochemistry (IHC) for catalase (CAT) and iNOS (NOS2). Nitration of tyrosine groups in proteins was also examined by IHC. Mean intracavernous pressure in the diabetic group was significantly lower than in the healthy controls (P <0.001) and was reversed by Tempol treatment (P <0.0108). NOS2 protein expression was significantly increased in diabetic animals compared with healthy controls and Tempol restored NOS2 protein level. Nitrotyrosine was also higher in diabetic animals and although Tempol treatment decreased its formation, it remained higher than that found in healthy controls. This study suggests that Tempol treatment increased erectile function through modulating oxidative stress-related genes in diabetic rats. This is the first report about the relationship between diabetes-induced erectile dysfunction and oxidative stress, and antioxidative therapy using the superoxide dismutase mimetic, Tempol, to restore erectile function

    Constraining Unparticles from Top Physics at TeVatron

    Full text link
    We study and analyze the recent observations of the top pair production σ(ppˉttˉ)\sigma (p\bar p\to t \bar t) at TeVatron through flavor conserving and flavor violating channels via{\it via} vector and tensor unparticles. The unparticle sector is considered with the possibility of being a color singlet or octet. The modified unparticle propagator is used to investigate the contribution of these unparticles to the observed AFBttˉA_{FB}^{t\bar t} (forward backward asymmetry in top pair production) and the spin correlation at TeVatron. We have also studied the impact of the flavor violating couplings of unparticles to the third generation quarks on (a) pair production of same sign tops/antitops σ(ppˉtt+tˉtˉ)\sigma (p\bar p\to tt+\bar t \bar t) at TeVatron and (b) the partial top decay width for ΓU(tuUV)\Gamma_{\cal U}(t\to u\,{\cal U}^V). We find that a large region of parameter space is consistent with the measurements of \tt production cross-section, \afbt and spin correlation coefficient at TeVatron and observe that the top decay width measurement constrains the flavor violating coupling of vector unparticles more severely than the same sign top/antitop production at TeVatron. We also predict the best point-set in the model parameter space for specific choices of \du corresponding to χmin2\chi^2_{\rm min} evaluated using the \mttb spectrum of \afbt from the data set of Run II of TeVatron at the integrated luminosity 8.7 fb1^{-1}. Our results and analysis are consistent even with unparticle theories having broken scale invariance as long as the infrared cut-off scale is much less than the top pair production threshold.Comment: 37 pages, 24 figures, 1 new figure and some discussions added, references updated, to appear in Physical Review
    corecore