44 research outputs found

    Differences in Mouse Hepatic Thyroid Hormone Transporter Expression with Age and Hyperthyroidism

    Get PDF
    Background: Clinical features of thyroid dysfunction vary with age, and an oligosymptomatic presentation of hyperthyroidism is frequently observed in the elderly. This suggests age modulation of thyroid hormone (TH) action, which may occur, for example, by alterations in TH production, metabolism and/or TH action in target organs. Objectives: In this paper, we address possible changes in TH transporter expression in liver tissues as a mechanism of age-dependent variation in TH action. Methods: Chronic hyperthyroidism was induced in 4- and 20-month-old C57BL6/NTac male mice (n = 8-10) by intraperitoneal injections of 1 µg/g body weight L-thyroxine (T4) every 48 h over 7 weeks. Control animals were injected with PBS. Total RNA was isolated from liver samples for analysis of the TH transporter and TH-responsive gene expression. TH concentrations were determined in mice sera. Results: Baseline serum free T4 (fT4) concentrations were significantly higher in euthyroid young compared to old mice. T4 treatment increased total T4, fT4 and free triiodothyronine to comparable concentrations in young and old mice. In the euthyroid state, TH transporter expression was significantly higher in old than in young mice, except for Mct8 and Oatp1a1 expression levels. Hyperthyroidism resulted in upregulation of Mct10, Lat1 and Lat2 in liver tissue, while Oatp1a1, Oatp1b2 and Oatp1a4 expression was downregulated. This effect was preserved in old animals. Conclusion: Here, we show age-dependent differences in TH transporter mRNA expression in the euthyroid and hyperthyroid state of mice focusing on the liver as a classical TH target organ

    Sex-specific phenotypes of hyperthyroidism and hypothyroidism in mice

    Get PDF
    Background Thyroid dysfunction is more common in the female population, however, the impact of sex on disease characteristics has rarely been addressed. Using a murine model, we asked whether sex has an influence on phenotypes, thyroid hormone status, and thyroid hormone tissue response in hyper- and hypothyroidism. Methods Hypo- and hyperthyroidism were induced in 5 -month-old female and male wildtype C57BL/6N mice, by LoI/MMI/ClO4 − or T4 i.p. treatment over 7 weeks, and control animals underwent sham treatment (N = 8 animals/sex/treatment). Animals were investigated for impact of sex on body weight, food and water intake, body temperature, heart rate, behaviour (locomotor activity, motor coordination, and strength), liver function, serum thyroid hormone status, and cellular TH effects on gene expression in brown adipose tissue, heart, and liver. Results Male and female mice showed significant differences in behavioural, functional, metabolic, biochemical, and molecular traits of hyper- and hypothyroidism. Hyperthyroidism resulted in increased locomotor activity in female mice but decreased muscle strength and motor coordination preferably in male animals. Hypothyroidism led to increased water intake in male but not female mice and significantly higher serum cholesterol in male mice. Natural sex differences in body temperature, body weight gain, food and water intake were preserved under hyperthyroid conditions. In contrast, natural sex differences in heart rate disappeared with TH excess and deprivation. The variations of hyper- or hypothyroid traits of male and female mice were not explained by classical T3/T4 serum state. TH serum concentrations were significantly increased in female mice under hyperthyroidism, but no sex differences were found under eu- or hypothyroid conditions. Interestingly, analysis of expression of TH target genes and TH transporters revealed little sex dependency in heart, while sex differences in target genes were present in liver and brown adipose tissue in line with altered functional and metabolic traits of hyper- and hypothyroidism. Conclusions These data demonstrate that the phenotypes of hypo- and hyperthyroidism differ between male and female mice and indicate that sex is an important modifier of phenotypic manifestations

    Sex-specific phenotypes of hyperthyroidism and hypothyroidism in aged mice

    No full text
    Abstract Background Sex and age play a role in the prevalence of thyroid dysfunction (TD), but their interrelationship for manifestation of hyper- and hypothyroidism is still not well understood. Using a murine model, we asked whether sex impacts the phenotypes of hyper- and hypothyroidism at two life stages. Methods Hyper- and hypothyroidism were induced by i.p. T4 or MMI/ClO4-/LoI treatment over 7 weeks in 12- and 20-months-old female and male C57BL/6N mice. Control animals underwent PBS treatment (n = 7–11 animals/sex/treatment). Animals were investigated for impact of sex on body weight, food and water intake, body temperature, heart rate, behaviour (locomotor activity, motor coordination and strength) and serum thyroid hormone (TH) status. Results Distinct sex impact was found in eu- and hyperthyroid mice, while phenotypic traits of hypothyroidism were similar in male and female mice. No sex difference was found in TH status of euthyroid mice; however, T4 treatment resulted in twofold higher TT4, FT4 and FT3 serum concentrations in adult and old females compared to male animals. Hyperthyroid females consistently showed higher locomotor activity and better coordination but more impairment of muscle function by TH excess at adult age. Importantly and in contrast to male mice, adult and old hyperthyroid female mice showed increased body weight. Higher body temperature in female mice was confirmed in all age groups. No sex impact was found on heart rate irrespective of TH status in adult and old mice. Conclusions By comparison of male and female mice with TD at two life stages, we found that sex modulates TH action in an organ- and function-specific manner. Sex differences were more pronounced under hyperthyroid conditions. Importantly, sex-specific differences in features of TD in adult and old mice were not conclusively explained by serum TH status in mice

    Additional file 1: Table S1-S3. of Sex-specific phenotypes of hyperthyroidism and hypothyroidism in aged mice

    No full text
    Statistical analysis of TT4, FT4, FT3 and TSH serum measurements in adult and old mice of both sexes. Two-way ANOVA followed by Bonferroni post hoc analysis was applied. Sex dependency was obvious as shown for Δ(mean female-mean male) values. Table S2 Statistical analysis of body temperature measurements in adult and old mice of both sexes. Two-way ANOVA followed by Bonferroni post hoc analysis was applied for hyper- and hypothyroid conditions. Average mean values of body temperature are shown as Δ(female-male). Table S3 Sex differences for area under curve (AUC) analysis of repeated body weight, food and water intake measurements. Two-way ANOVA followed by Bonferroni post hoc analysis was applied to AUC (±SEM) values, calculated by GraphPad Prism 7. (DOCX 18 kb
    corecore