56 research outputs found

    A Chunk-Based Resource Allocation Scheme for Downlink MIMO-OFDMA Channel using Linear Precoding

    Get PDF
    Abstract-This paper presents a novel chunk-based resource allocation scheme for MIMO-OFDMA multiuser downlink channel. In chunk-based resource allocation, a number of contiguous subcarriers of each OFDM symbol are considered as a chunk and resource allocation is performed on chunk-bychunk basis. Herein, an optimization problem is formulated that aims to maximize system sum rate under an average power constraint per chunk when Zero Forcing Beamforming (ZFB) is used for inter-user interference elimination within chunks. Under this framework, a low-complexity resource allocation algorithm is presented that exploits frequency and space correlation of wireless channels and jointly solves the problems of chunk allocation and power allocation. Simulation results show that the proposed algorithm performs closely to the optimal solution of the examined problem

    Reliable data analysis through blockchain based crowdsourcing in mobile ad-hoc cloud

    Get PDF
    Mobile Ad-hoc Cloud (MAC) is the constellation of nearby mobile devices to serve the heavy computational needs of the resource constrained edge devices. One of the major challenges of MAC is to convince the mobile devices to offer their limited resources for the shared computational pool. Credit based rewarding system is considered as an effective way of incentivizing the arbitrary mobile devices for joining the MAC network and to earn the credits through computational crowdsourcing. The next challenge is to get the reliable computation as incentives attract the malicious devices to submit fake computational results for claiming their reward and we have used the blockchain based reputation system for identifying the malicious participants of MAC.This paper presents a malicious node identification algorithm integrated within the Iroha based permissioned blockchain. Iroha is a project of hyperledger which is focused on mobile devices and thus light-weight in nature. It is used for keeping the track of rewarding and reputation system driven by the malicious node detection algorithm. Experiments are conducted for evaluated the implemented test-bed and results show the effectiveness of algorithm in identifying the malicious devices and conducting the reliable data analysis through the blockchain based computational crowdsourcing in MAC

    Information Fusion for 5G IoT: An Improved 3D Localisation Approach Using K-DNN and Multi-Layered Hybrid Radiomap

    Get PDF
    Indoor positioning is a core enabler for various 5G identity and context-aware applications requiring precise and real-time simultaneous localisation and mapping (SLAM). In this work, we propose a K-nearest neighbours and deep neural network (K-DNN) algorithm to improve 3D indoor positioning. Our implementation uses a novel data-augmentation concept for the received signal strength (RSS)-based fingerprint technique to produce a 3D fused hybrid. In the offline phase, a machine learning (ML) approach is used to train a model on a radiomap dataset that is collected during the offline phase. The proposed algorithm is implemented on the constructed hybrid multi-layered radiomap to improve the 3D localisation accuracy. In our implementation, the proposed approach is based on the fusion of the prominent 5G IoT signals of Bluetooth Low Energy (BLE) and the ubiquitous WLAN. As a result, we achieved a 91% classification accuracy in 1D and a submeter accuracy in 2D

    On the Load Balancing of Edge Computing Resources for On-Line Video Delivery

    Get PDF
    Online video broadcasting platforms are distributed, complex, cloud oriented, scalable, micro-service-based systems that are intended to provide over-the-top and live content to audience in scattered geographic locations. Due to the nature of cloud VM hosting costs, the subscribers are usually served under limited resources in order to minimize delivery budget. However, operations including transcoding require high-computational capacity and any disturbance in supplying requested demand might result in quality of experience (QoE) deterioration. For any online delivery deployment, understanding user's QoE plays a crucial role for rebalancing cloud resources. In this paper, a methodology for estimating QoE is provided for a scalable cloud-based online video platform. The model will provide an adeptness guideline regarding limited cloud resources and relate computational capacity, memory, transcoding and throughput capability, and finally latency competence of the cloud service to QoE. Scalability and efficiency of the system are optimized through reckoning sufficient number of VMs and containers to satisfy the user requests even on peak demand durations with minimum number of VMs. Both horizontal and vertical scaling strategies (including VM migration) are modeled to cover up availability and reliability of intermediate and edge content delivery network cache nodes

    3D future internet media

    No full text
    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The main contributions are based on the results of the FP7 European Projects ROMEO, which focus on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the Future Internet (www.ict-romeo.eu). The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of constant video quality to both fixed and mobile users. ROMEO will design and develop hybrid-networking solutions that combine the DVB-T2 and DVB-NGH broadcast access network technologies together with a QoE aware Peer-to-Peer (P2P) distribution system that operates over wired and wireless links. Live streaming 3D media needs to be received by collaborating users at the same time or with imperceptible delay to enable them to watch together while exchanging comments as if they were all in the same location. The volume provides state-of-the-art information on 3D multi-view video, spatial audio networking protocols for 3D media, P2P 3D media streaming, and 3D Media delivery across heterogeneous wireless networks among other topics. Graduate students and professionals in electrical engineering and computer science with an interest in 3D Future Internet Media will find this volume to be essential reading. Describes the latest innovations in 3D technologies and Future Internet media Focuses on research to facilitate application scenarios such as social TV and high-quality, real-time collaboration Discusses QoE for 3

    Novel 3D media technologies

    No full text
    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The contributions are based on the results of the FP7 European Project ROMEO, which focuses on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the future Internet. The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of consistent video quality to fixed and mobile users. ROMEO will present hybrid networking solutions that combine the DVB-T2 and DVB-NGH broadcast access network technologies together with a QoE aware Peer-to-Peer (P2P) distribution system that operates over wired and wireless links. Live streaming 3D media needs to be received by collaborating users at the same time or with imperceptible delay to enable them to watch together while exchanging comments as if they were all in the same location. This book is the second of a series of three annual volumes devoted to the latest results of the FP7 European Project ROMEO. The present volume provides state-of-the-art information on immersive media, 3D multi-view video, spatial audio, cloud-based media, networking protocols for 3D media, P2P 3D media streaming, and 3D Media delivery across heterogeneous wireless networks among other topics. Graduate students and professionals in electrical engineering and computer science with an interest in 3D Future Internet Media will find this volume to be essential reading. Describes the latest innovations in 3D technologies and Future Internet Media Focuses on research to facilitate application scenarios such as social TV and high-quality, real-time collaboration Discusses QoE for 3D Represents the last of a series of three volumes devoted to contributions from FP7 projects in the area of 3D and networked medi

    Connected media in the future Internet era

    No full text
    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The contributions are based on the results of the FP7 European Project ROMEO, which focuses on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the future Internet. The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of consistent video quality to fixed and mobile users. ROMEO will present hybrid networking solutions that combine the DVB-T2 and DVB-NGH broadcast access network technologies together with a QoE aware Peer-to-Peer (P2P) distribution system that operates over wired and wireless links. Live streaming 3D media needs to be received by collaborating users at the same time or with imperceptible delay to enable them to watch together while exchanging comments as if they were all in the same location. This book is the last of a series of three annual volumes devoted to the latest results of the FP7 European Project ROMEO. The present volume provides state-of-the-art information on 3D multi-view video, spatial audio networking protocols for 3D media, P2P 3D media streaming, and 3D Media delivery across heterogeneous wireless networks among other topics. Graduate students and professionals in electrical engineering and computer science with an interest in 3D Future Internet Media will find this volume to be essential reading
    • …
    corecore