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Abstract—In the Internet-of-Things (IoT), users might share
part of their data with different IoT prosumers, which offer
applications or services. Within this open environment, the
existence of an adversary introduces security risks. These can
be related, for instance, to the theft of user data, and they
vary depending on the security controls that each IoT prosumer
has put in place. To minimize such risks, users might seek an
“optimal” set of prosumers. However, assuming the adversary
has the same information as the users about the existing security
measures, he can then devise which prosumers will be preferable
(e.g., with the highest security levels) and attack them more
intensively. This paper proposes a decision-support approach that
minimizes security risks in the above scenario. We propose a
non-cooperative, two-player game entitled Prosumers Selection
Game (PSG). The Nash Equilibria of PSG determine subsets of
prosumers that optimize users’ payoffs. We refer to any game
solution as the Nash Prosumers Selection (NPS), which is a vector
of probabilities over subsets of prosumers. We show that when
using NPS, a user faces the least expected damages. Additionally,
we show that according to NPS every prosumer, even the least
secure one, is selected with some non-zero probability. We
have also performed simulations to compare NPS against two
different heuristic selection algorithms. The former is proven to
be approximately 38% more effective in terms of security-risk
mitigation.

I. INTRODUCTION

Scientific research and technological achievements of the
last few decades within the field of mobile and wireless
communications have paved the way for a vast deployment of
the Internet-of-Things (IoT). In addition to the advent of IoT,
the growing use of smartphones enables the user to experience
unprecedented services. For instance, having the vision of
an IoT world, Apple developed iBeacon [1], a technology
standard which permits mobile applications to receive beacon
signals from the physical world and react accordingly. Beacons
in the real world can be used in several applications enhancing
user experience by providing futuristic services [2], [3].

However, this growth in terms of applications and services
comes with the need users to share part of their data with
different IoT prosumers [4]. A prosumer participates in IoT
service development stages and therefore it offers services
and applications. Although users benefit from IoT prosumers,
security is a very important consideration in these “open” en-
vironments. Therefore, the set of prosumers that a user selects

to share his/her data with determines the level of security risk
that the user faces. For example an attacker can use the vul-
nerability CVE-2012-1823 to launch the linux.darlloz
attack [5] that infects devices to mine crypto currency. The
same attack vector can also redirect the user’s browser to
whatever the attacker desires or to make the user’s device part
of a botnet. According to Symantec [5], 38% on infections
of this attack type are IoT devices, especially routers. To
understand the scale of vulnerable IoT devices, the Tripwire
Survey [6] reports that 80% of Amazon’s top-25 best-selling
SOHO wireless router models have security vulnerabilities.

A. Motivation

The motivation of our work lies within the field of decision-
making for minimizing security risks. Suppose a user is
within an IoT network infrastructure and requests different
applications and services, which are likely to be offered
by different prosumers. Following the architecture proposed
in [7], an IoT Gateway updates the list of services that it
manages on behalf of prosumers residing in the network, thus
making these services consumable by both local (i.e., residing
in the network) and remote (e.g., via Internet) users. The same
gateway is aware of the security controls that each prosumer
has put in place. This information can be used to elicit the
security levels of all prosumers, and provide them to the
user prior to his/her decision about sharing data with a set
of prosumers. The security level [8] determines the strength
(i.e., “inverse vulnerability”) of a prosumer against different
attacks. An application that supports this elicitation is the Trust
Feedback Toolkit (TFT) [9] proposed in the Usable Trust in
the Internet of Things (uTRUSTit) project [10], [11].

Apart from the user, any adversary can also be aware of the
different prosumers’ security controls akin to levels because
he can appear as a normal user who requests such information
from the IoT Gateway. This is a crucial assumption because
the attacker can guess the set of prosumers that the user might
choose; therefore, he has “good chances” of comprising user
data successfully. More specifically, the attacker might assume
that the users will take a common-sense approach choosing the
prosumers with the highest security levels. However, in this
paper, we prove that a game-theoretic approach outperforms
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the common-sense approach. Note that we have assumed
that the adversary attacks only one prosumer in order (i) to
minimize the likelihood of being detected, and (ii) to utilize
his/her time in the most efficient way by focusing on one goal.

B. Environment

We investigate the case of an IoT infrastructure which hosts
a set of prosumers as P := {1, 2, . . . , n}. Any user can
share private data with any of these prosumers, including
combinations of them, in return for some services. We suppose
that an attacker lies within this IoT area aiming at stealing user
data (e.g., credit card details) by compromising a prosumer
that the user might select. To achieve this, the attacker must
bypass the security measures that the targeted prosumer has
implemented.

We model the security level of a prosumer i by a uniform
random variable Si ∈ [0, 1), whose distribution is known
to both the user and adversary by, for instance, using a
mobile application as in [9]. Hence, we can state that 1− Si

corresponds to the vulnerability level of prosumer i. We
have assumed that Si 6= 1, in any case, due to zero-day
vulnerabilities. We also assume that the value of user data
equals V . Note that our analysis does not change if we assume
that V is the expectation of the User data value when this is
a random variable.

To motivate the reader, we can think of a scenario where
a shopping centre (playing the role of the user) seeks to
recommend a set of IoT prosumers that can be used by the
local shops to allow NFC payments for their clients/customers.
To do that, the user performs an a priori analysis of the security
of each of the available NFC payment systems and sets their
security levels.

C. Contributions

The main contribution of this paper is a decision-support
system for users to select a set of prosumers that minimizes
security risks in presence of an adversary who threatens their
“assets” (e.g., private data). We have formulated a complete
information game, entitled Prosumers Selection Game (PSG)
between two players: the User who chooses a set of prosumers
and an Attacker who is attempting to penetrate a prosumer’s
system. We have investigated the IoT prosumer selection
problem mathematically and we have provided constraints
on the User’s strategy at the equilibrium of PSG. We have
devised optimal User strategies in worst-case scenarios where
Attacker imposes the highest possible security risks, and we
have proven that the game-theoretic solution, called Nash
Prosumers Selection (NPS), performs in the best possible way.
We have also undertaken simulations that demonstrate the
efficiency of NPS as opposed to two other heuristic selection
algorithms.

D. Outline

The remainder of this paper is organized as follows. Sec-
tion II discusses related work, while in Section III we formu-
late the Prosumers Selection Game (PSG) by introducing the

two players, their strategy sets, and the corresponding payoffs
for both pure and mixed strategies. Section IV presents some
theoretical results for the saddle points (i.e., equilibria) of PSG,
while simulation results for different selection algorithms are
presented in Section V. Finally, Section VI concludes this
paper by summarizing its main contributions, limitations and
providing our plans for future work.

II. RELATED WORK

Security, privacy, and trust are ranked among the top re-
search challenges for the IoT. Recent work has been under-
taken by the Usable Trust in the Internet of Things (uTRUSTit)
project [10]. An outcome of uTRUSTit is the development
of the Trust Feedback Toolkit (TFT) [9], which informs
users about the security of an IoT network. As a result, this
feedback is available to literally every user, either benevolent
or malicious.

Fritsch et al. [12] discuss trust issues related to different
IoT devices and services, given that for every transaction
committed, personal data are disclosed. According to the au-
thors, whether a user should trust (and therefore share his/her
data) or not a specific IoT infrastructure, greatly depends on
the type of transaction. In their work, they present different
trust strategies, varying from simple “always” or “never” trust
to more complicated schemes involving central agents or
analyzing mechanisms to evaluate trust. They conclude that
there is not a single strategy in trusting IoT applications and
they underline the significance of developing flexible trust
management mechanisms.

Due to the pioneering nature of the IoT field, the number
of game-theoretic approaches that are concerned with security
and trust is very limited. In [13] Duan et al. study the problem
of creating an effective algorithm in terms of energy consump-
tion and bandwidth usage, capable of evaluating node’s trust
derivation process. They use game theory to support the node
decision with regard to replying a trust request with respect
to the incurred energy consumption.

A game based security model for medical applications
is proposed, in [14], by Hamdi et al. The authors propose
a decision support mechanism that assesses the remaining
battery life, the channel bandwidth, the memory capacity, and
the nearby compromised nodes, to determine whether or not
the sender of a message should be authenticated.

Chen et al. propose a fusion-based defensive model to
address intentional attacks in the IoT [8]. In their model the
attacker is fully informed about network topology and capable
of sabotaging all nodes simultaneously. In their zero-sum game
between the adversary and defender, they introduce a nodal de-
cision mechanism with minimum overhead, which is capable
of guaranteeing robustness in large-scale IoT networks.

All the aforementioned papers use game theory to provide
network nodes (i.e., things) with appropriate tools to mitigate
certain attacks. In contrast, our work focuses on providing
users with the suitable decision support mechanism, in order
to assure at least a threshold above which the attacker cannot
cause higher damage. To the best of our knowledge this is the
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first work done within the realm of IoT prosumers selection
that aims at minimizing security risks. The foundation of
our work is based on the game-theoretic model published by
Fielder et al. in [15]. We see the cybersecurity targets and
schedules considered in [15] as all available prosumers and
the possible different subsets of them, correspondingly.

III. GAME-THEORETIC FORMULATION

In this section we formulate a two-player, determinis-
tic, complete-information game, entitled Prosumers Selection
Game (PSG), between the User and Attacker. In this game,
players choose their strategies simultaneously. Thus the At-
tacker does not know which prosumers have been selected by
the User, and the User is not aware of which prosumer is under
attack. The User requires to communicate with k prosumers
during a time period that defines a one-shot game. On the
other hand, the Attacker wishes to successfully compromise a
prosumer in order to reveal users’ private data.

Fig. 1 is an abstract illustration of our model environment.
This game model facilitates decisions related to which pro-
sumers the User must trust (i.e., in this sense, trust and security
are seen in a similar fashion) more when sharing his/her
data or using their services. We assume that the Attacker
attacks only one prosumer at a time, and that he can attack
any of them. We consider the worst-case scenario for the
User, where the Attacker knows all the available prosumers
and their corresponding security levels modeling a complete-
information game.

Fig. 1. Illustration of our model. The User chooses to communicate with 2
out of 4 prosumers, and the Attacker is attacking one of them.

A. Strategy Sets

The normal form of this game is described as follows. A
pure strategy of the User is to choose k out of n prosumers
to use some of their applications or services. Formally, the
User chooses a size-k subset P ′ ⊆ P . A pure strategy, related
to the selection of P ′, is represented by a tuple s = 〈si〉 ∈
{0, 1}n, where si equals 1 when prosumer i is chosen by the
User (i.e., i ∈ P ′); or 0 otherwise. A mixed strategy U =
〈us〉 of the User is a probability distribution over the different
tuples, where us is the probability of choosing subset s. On
the other hand, the Attacker’s pure strategy space is the set of
prosumers, seen as targets, while a mixed strategy is denoted
by A = 〈ai〉, where ai represents the probability of attacking
prosumer i.

B. Payoffs

In this paper we formulate a zero-sum game according to
which the loss of User equals the Attacker’s benefit. Rationale
of this choice is that a zero-sum game in the security risk
management domain represents scenarios where the Attacker
aims at causing the maximum possible loss to the User.
Therefore, we aim at supporting the User’s decision in worst-
case scenarios. However, we provide game solutions beyond
the zero-sum game by looking at cases where the Attacker’s
payoff is a negative affine transformation of the User’s payoff.

Suppose the User chooses a subset P ′ of prosumers and
prosumer i is attacked. Formally, if i ∈ P ′, the User loses V
with probability (1 − Si) (i.e., we assume that a more secure
prosumer is more difficult to be compromised, therefore yields
V with lower probability), and the Attacker gains V with the
same probability. Consequently, for any prosumer i /∈ P ′, the
User has no security loss and the Attacker has no benefit.

We define the security risk Ri of the user when sharing
data with prosumer i, as the product of data value V and the
probability (1− Si) of the prosumer being compromised and
therefore the User data being stolen. Formally,Ri := (1 −
Si)V . The expected payoff of the User, when the Attacker
plays according to a mixed strategy A and the User selects s,
is given by

JU (s,A) := −
∑
i

si ai Ri. (1)

On the other hand, the expected payoff of the Attacker when
attacking i and the User plays U is given by

JA(U, i) :=
∑
s

sius Ri. (2)

From Eq. (1), we see that the User’s strategic choice influences
the payoffs only through the probability of selecting each
prosumer. Since every prosumer may be present in more than
one selected subsets, we must compute the probability of
each individual prosumer to be selected. Hence the expected
payoff of the User can be determined by the representation of
User’s mixed-strategy action spaces that are simpler than the
canonical ones, defined as follows.

Definition 1: When the User requires to share data with
k prosumers, we define the vector of prosumers induced by
the strategy U as the marginal probabilities vector p = 〈pi〉,
where the probability pi of choosing prosumer i is given by
pi :=

∑
s sius, where 0 ≤ pi ≤ 1, and

∑n
i=1 pi = k.

It is easy to see that there is a mapping between U and p,
hence we refer to either of those as the mixed strategy of the
User from now on.

IV. THEORETICAL RESULTS

For a given mixed strategy A of the Attacker, User seeks
to minimize the probability of his/her own data to be stolen
by choosing the mixed strategy U. Given the pair 〈U,A〉 of
mixed strategies, the User’s expected payoff is given by

JU (U,A) = −
∑
s

∑
i

us ai si Ri. (3)
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If we express the User’s strategy by p, then for the pair
〈p, A〉 of mixed strategies the User’s payoff is given by

JU (p,A) = −
∑
i

pi ai Ri. (4)

Since we are investigating a two-person zero-sum game with
finite number of actions for both players, according to Nash
[16] it admits at least one mixed-strategy Nash Equilibrium
(NE). Saddle-points correspond to Nash equilibria as discussed
in [17].

From [18], we know that PSG admits a saddle
point in mixed strategies, (U∗,A∗), with the prop-
erty U∗ = argmaxU minA JU (U,A) and A∗ =
argmaxA minU JA(U,A). The pair of saddle point strategies
(U∗,A∗) are, at the same time, security strategies for the
players, i.e., they ensure a minimum performance regardless
of the opponent’s actions. Furthermore, if the game admits
multiple saddle points (and strategies), they have the ordered
interchangeability property, i.e., the player achieves same per-
formance level independent from the other player’s choice of
saddle-point strategy.

We refer to the strategy of User at the equilibrium as Nash
Prosumers Selection (NPS). Our results can be extended to
non-zero sum, bi-matrix games. In this case, the existence of
a NE is also guaranteed, but the additional properties hold
only in the case where Attacker’s utility is a negative affine
transformation of the defender’s utility.

The minimax theorem [19] states that, for zero sum games
NE, maxmin, and minimax solutions coincide. Therefore

U∗ = argmin
U

max
A
JA(U,A). (5)

This means that regardless of the Attacker’s strategy, NPS
guarantees a minimum performance, which is an upper limit
of expected damage for the User.

On the other hand, the Attacker seeks his/her best re-
sponse by attacking prosumers that maximize his/her payoff
JA(p, i) = JA(pi, i) := pi Ri when the User plays p.
Therefore, the support of the Attacker’s strategy has to be
a subset of

argmax
i

(
pi Ri

)
. (6)

We begin our analysis by providing a necessary condition
on the NPS strategies.

Lemma 1: In PSG, for every prosumer i, pi = 1 or pi Ri =
maxj pj Rj must hold when the User plays the NPS strategy.

Proof: For the sake of contradiction, suppose that the
claim of the lemma does not hold, that is, suppose that there
exist a Nash equilibrium (p,A) and a prosumer i such that
pi < 1 and pi Ri < maxj pj Rj . Given Eq. (6) and our
assumption that pi Ri < maxj pj Rj , we have that ai = 0.
Then, let k be an arbitrary prosumer such that ak > 0. Since
A is a best-response strategy, pk > 0 must hold obviously.
Now, consider the strategy p∗ which is defined as follows:

∀j 6= i, k let p∗j = pj ; p∗i = pi + ∆; p∗k = pk −∆, (7)

where ∆ = min{1 − pi, pk}. We can see that, from Eqs. (4)
and (7), we have that

JU (p∗,A)− JU (p,A) = −
∑
j 6= i,k

pj aj Rj − (pi + ∆) ai Ri

− (pk −∆) ak Rk +
∑
j 6=i,k

pj aj Rj + pi ai Ri + pk ak Rk

ai=0
= ∆ ak Rk > 0, because ∆, ak, Rk > 0. (8)

Therefore, we have that against A, the strategy p∗ achieves a
higher payoff for the defender than strategy p. However, this
contradicts our initial assumption that p is a best response;
consequently, the claim of lemma must hold.

Intuitively, the above lemma states that, in an equilibrium,
the prosumers can be divided into two groups. Prosumers in
the first group are always selected by the User; however, the
Attacker’s payoff for attacking these prosumers is less than
or equal to the payoff for attacking prosumers in the second
group. On the other hand, prosumers in the second group are
selected by the User only with less-than-one probability.

The following corollary confirms the intuition that more
secure prosumers should be selected with higher probability.

Corollary 1: For any NPS strategy and prosumers i, j, we
have that Ri ≤ Rj implies pi ≥ pj .

Proof: For the sake of contradiction, suppose there exist
an NPS strategy p and prosumers i, j such that Ri ≤ Rj

and pi < pj . Since pi < pj ≤ 1, we have from Lemma 1
that pi Ri = maxk pk Rk. However, this contradicts pi Ri ≤
pi Rj < pj Rj ; hence, the corollary must hold.

The following theorem establishes the surprising result that,
in an NPS strategy, every prosumer – even the least secure one
– is selected with some non-zero probability.

Theorem 1: In PSG, if k > 0, the User selects every
prosumer with some non-zero probability according to NPS.

Proof: Since k > 0, there exists at least one prosumer j
such that pj > 0; hence, maxj pj Rj > 0. From Lemma 1,
we have that pi = 1 or pi Ri = maxj pj Rj must hold for
every prosumer i. Consequently, for every prosumer i, the
probability pi is equal either to 1 > 0 or to maxj pj Rj

Ri
> 0.

Finally, we show how to compute an NPS strategy effi-
ciently, in O(n2) time.

Theorem 2: Without loss of generality, assume that R1 ≤
R2 ≤ . . . ≤ Rn and k < n. Then, the following algorithm
outputs an NPS strategy in O(n2) steps:

1) Let S := k.
2) Construct p(S) = 〈p1(S), . . . , pn(S)〉 such that:

a) For every i ≤ S, let pi(S) := 1.

b) For every i > S, let pi(S) := (k − S)
1
Ri∑n

j=S+1
1

Rj

.

3) If S = 0 or RS ≤ pS+1(S)RS+1, then output p(S).
4) Otherwise, let S := S − 1 and continue from Step 2.

Proof: First, suppose that we are given a fixed S, and the
User’s strategic choice is restricted to strategies p where the
number of prosumers i with pi = 1 is S (i.e., the User selects
exactly S prosumers with certainty, and n − S prosumers
with less-than-one probability). Then, from Corollary 1 and
the assumption that prosumers are ordered by their Ri values,
we readily have that pi = 1 has to hold for every i ≤ S if p
is an NPS strategy.
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Next, it easy to see that pi = (k − S)
1
Ri∑n

j=S+1
1

Rj

must

hold for every i > S if p is an NPS strategy. Otherwise,
either

∑
i pi = 1 or the uniformity of pi Ri over i > S (see

Lemma 1) would be violated.
Consequently, if there exists an NPS strategy p for a given

S, then it has to be the strategy p(S) defined in Steps 2.a and
2.b of the above algorithm. Hence, it remains to show that the
algorithm outputs the strategy p(S) for a correct value of S.
Firstly, if the condition RS ≤ pS+1(S)RS+1 is not satisfied
for a strategy, then that strategy cannot be an NPS. To see this,
consider the inequality pS(S)RS = RS > pS+1(S)RS+1 ≤
maxk pk(S)Rk, which obviously contradicts Lemma 1.

Finally, we show that, of all the S values satisfying the
condition RS ≤ pS+1(S)RS+1, the highest one is the optimal.
Let S1 < S2 be two values satisfying the condition. From
Lemma 1 and the definition of the attacker’s payoff, it follows
that attacking prosumer n is a best response for the attacker
against p(S). Then, it is easy to see that

pn(S1) = (k − S1)
1
Rn∑n

j=S1+1
1
Rj

> (k − S2)
1
Rn∑n

j=S2+1
1
Rj

= pn(S2).

Consequently we have that the attacker’s payoff and hence,
the defender’s loss is higher for S1 than for S2. Therefore, we
have that the optimal value of S is the one that is used by the
output of the algorithm, which concludes our proof.

V. SIMULATION RESULTS

In this section, we present the results of numeric simula-
tions undertaken by using a game-theoretic Python simulator
enriched with the IoT security model proposed in this paper.
We compare the efficiency of NPS against a Uniform and
a Common Sense Strategy (CSS). According to the Uniform
strategy, User selects a subset of prosumers by using a uniform
probability distribution, while according to CSS, User selects
the subset that includes the most secure prosumers.

We have simulated four different scenarios akin to exper-
iments, where in each experiment we fix the number k of
requested prosumers and vary the number n of prosumers.
We have simulated an attacker who attacks prosumers in
a proportional manner based on the security level of each
prosumer. More specifically, the more controls a prosumer
has implemented (i.e., higher security level) the more likely
it is to be attacked by the adversary. This adversarial type
assumes a rational attacker who believes that more users will
select subsets that include prosumers with higher security
levels. Thus, the weighted attack strategy determines that
the probability of prosumer i to be attacked is given by
Si/

∑
i∈O Si.

Each experiment consists of a number of cases. A case
is determined by a pair (k, n). In each case we have sim-
ulated 500 selection decisions, representing 500 independent
iterations of the PSG, in which the parameter values were

varied. The latter represent 500 different users playing against
the attacker. To evaluate the performance of NPS strategy as
opposed to Uniform and CSS, we have aggregated the security
risk inflicted by the attacker to 500 users for the 3 different
strategies.

In Figs. 2-5 we present the simulation results for the afore-
said scenarios. All experiments corroborate the idea that for a
given k, the security risk decreases when n grows. This was
an expected outcome because when increasing the number
of available prosumers the probability of a prosumer to be
attacked decreases. It is also profound that when the user’s
choices are limited (i.e., when k → n), greater security risk
is anticipated. Every case studied proved that NPS always
performs better than Uniform and CSS. The latter seems to
perform, in overall, slightly better than Uniform, although
their difference decreases as the number of requested services
increases.

Fig. 2. Aggregated security risk when selecting 2 prosumers.

Fig. 3. Aggregated security risk when selecting 3 prosumers.

In the first experiment (Fig. 2), where the User selects 2
prosumers, NPS attributes an average of 25% lower security
risk compared to Uniform and 16% to CSS. When the selected
prosumers increase to 3 (Fig. 3), NPS decreases security risk
by approximately 54% than Uniform and 34% than CSS. In
these series of experiments, CSS was slightly better (15% -
22%) than Uniform.
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The rest of experiments further show that NPS achieves on
average one third lower security risk. More specifically, when
the User selects 4 services (Fig. 4), NPS decreases security
risk by an average of 54% and 43% as opposed to Uniform
and CSS, respectively, while in the experiment with 5 services
(Fig. 5), NPS achieves in average 35% less security risk than
the other two strategies.

Fig. 4. Aggregated security risk when selecting 4 prosumers.

Fig. 5. Aggregated security risk when selecting 5 prosumers.

VI. CONCLUSION

In this paper, we provide a decision support methodology
for users to select from a set of IoT prosumers in a way
that minimizes their security risks. Such methodology can be
implemented, for instance, by using software agents running
on the users’ devices. The game-theoretic solution discussed,
called Nash Prosumers Selection, is a mixed-strategy Nash
Equilibrium that can be translated to a vector of marginal
probabilities over the set of IoT prosumers. By using a
mixed strategy, the User, who abstracts any number of users,
randomizes over the prosumer selection in an optimal manner.
Such randomization aims at confusing the Attacker. It can also
be interpreted as the percent of users in an IoT area who
choose a particular subset of prosumers.

Future work will aim at increasing the realism of our model
by modeling a Bayesian game (i.e., incomplete-information
game). In this realm, the players initially have uncertainty

about their opponents’ preferences. For instance, the secu-
rity levels of the prosumers might not be available to non-
authorized users. Furthermore, we have plans to investigate a
non-zero sum game by introducing some attacking cost and
considering that the value of User data might be evaluated
differently by the players. Another dimension of the same
problem is when the Attacker is motivated by non-monetary
profits, such as reputation acquired after successfully hacking a
prosumer. We also plan to consider a game where the Attacker
targets multiple prosumers, and the User takes into account
network characteristics when deciding upon selection of a
particular subset of prosumers. More importantly, we plan
to consider different benefits, measured in terms of services
provision, when the User chooses different prosumers.
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