82 research outputs found

    Doping and critical-temperature dependence of the energy gaps in Ba(Fe_{1-x}Co_x)_2As_2 thin films

    Get PDF
    The dependence of the superconducting gaps in epitaxial Ba(Fe_{1-x}Co_{x})_2As_2 thin films on the nominal doping x (0.04 \leq x \leq 0.15) was studied by means of point-contact Andreev-reflection spectroscopy. The normalized conductance curves were well fitted by using the 2D Blonder-Tinkham-Klapwijk model with two nodeless, isotropic gaps -- although the possible presence of gap anisotropies cannot be completely excluded. The amplitudes of the two gaps \Delta_{S} and \Delta_{L} show similar monotonic trends as a function of the local critical temperature T_{c}^{A} (measured in the same point contacts) from 25 K down to 8 K. The dependence of the gaps on x is well correlated to the trend of the critical temperature, i.e. to the shape of the superconducting region in the phase diagram. When analyzed within a simple three-band Eliashberg model, this trend turns out to be compatible with a mechanism of superconducting coupling mediated by spin fluctuations, whose characteristic energy scales with T_{c} according to the empirical law \Omega_{0}= 4.65*k_{B}*T_{c}, and with a total electron-boson coupling strength \lambda_{tot}= 2.22 for x \leq 0.10 (i.e. up to optimal doping) that slightly decreases to \lambda_{tot}= 1.82 in the overdoped samples (x = 0.15).Comment: 8 pages, 5 color figure

    Resistivity in Co-doped Ba-122: comparison of thin films and single crystals

    Full text link
    The temperature dependence of the resistivity of epitaxial Ba(Fe_(1-x)Co_x)2As2 thin films (with nominal doping x = 0.08, 0.10 and 0.15) has been analyzed and compared with analogous measurements on single crystals taken from literature. The rho(T) of thin films looks different from that of single crystals, even when the cobalt content is the same. All rho(T) curves can be fitted by considering an effective two-band model (with holes and electrons bands) in which the electrons are more strongly coupled with the bosons (spin fluctuations) than holes, while the effect of impurities is mainly concentrated in the hole band. Within this model the mediating boson has the same characteristic energy in single crystals and thin films, but the shape of the transport spectral function at low energy has to be very different, leading to a "hardening" of the electron-boson spectral function in thin films, associated with the strain induced by the substrate.Comment: 13 pages, 4 figure

    ab-plane resistivity and possible charge stripe ordering in strongly underdoped La2x_{2-x}Srx_{x}CuO4_{4} single crystals

    Full text link
    We have measured the ab-plane resistivity of La2x_{2-x}Srx_xCuO4_4 single crystals with small Sr content (x=0.052 ÷\div 0.075) between 4.2 and 300 K by using the AC Van der Pauw technique. As recently suggested by Ichikawa et al., the deviation from the linearity of the ρab(T)\rho_{\mathrm{ab}}(T) curve starting at a temperature Tch_{\mathrm{ch}} can be interpreted as due to a progressive slowing down of the fluctuations of pre-formed charge stripes. An electronic transition of the stripes to a more ordered phase could instead be responsible for some very sharp anomalies present in the ρab(T)\rho_{\mathrm{ab}}(T) of superconducting samples just above TcT_{\mathrm{c}}.Comment: M2S-HTSC-VI Conference paper (2 pages, 2 figures), using Elsevier style espcrc2.st

    Control of bulk superconductivity in a BCS superconductor by surface charge doping via electrochemical gating

    Get PDF
    The electrochemical gating technique is a powerful tool to tune the surface conduction properties of various materials by means of pure charge doping, but its efficiency is thought to be hampered in materials with a good electronic screening. We show that, if applied to a metallic superconductor (NbN thin films), this approach allows observing reversible enhancements or suppressions of the bulk superconducting transition temperature, which vary with the thickness of the films. These results are interpreted in terms of proximity effect, and indicate that the effective screening length depends on the induced charge density, becoming much larger than that predicted by standard screening theory at very high electric fields

    Energy-efficient adaptive machine learning on IoT end-nodes with class-dependent confidence

    Get PDF
    Energy-efficient machine learning models that can run directly on edge devices are of great interest in IoT applications, as they can reduce network pressure and response latency, and improve privacy. An effective way to obtain energy-efficiency with small accuracy drops is to sequentially execute a set of increasingly complex models, early-stopping the procedure for 'easy' inputs that can be confidently classified by the smallest models. As a stopping criterion, current methods employ a single threshold on the output probabilities produced by each model. In this work, we show that such a criterion is sub-optimal for datasets that include classes of different complexity, and we demonstrate a more general approach based on per-classes thresholds. With experiments on a low-power end-node, we show that our method can significantly reduce the energy consumption compared to the single-threshold approach

    A Study of Carbon Substitutions in MgB_2 within the two-band Eliashberg theory

    Full text link
    We study the effects of C substitutions in MgB_2 within the two-band model in the Eliashberg formulation. We use as input the B-B stretching-mode frequency and the partial densities of states N_{sigma}(EF) and N_{pi}(EF), recently calculated for Mg(B_{1-x}C_{x})_2 at various x values from first-principles density functional methods. We then take the prefactor in the Coulomb pseudopotential matrix, mu, and the interband scattering parameter, Gamma^{sigma pi}, as the only adjustable parameters. The dependence on the C content of Tc and of the gaps (Delta_{sigma} and Delta_{pi}) recently measured in Mg(B_{1-x}C_{x})_2 single crystals indicate an almost linear decrease of mu on increasing x, with an increase in interband scattering that makes the gaps merge at x=0.132. In polycrystals, instead, where the gap merging is not observed, no interband scattering is required to fit the experimental data.Comment: 7 pages, 8 figures, RevTex4. Detailed discussion of the results adde

    The effect of magnetic impurities in a two-band superconductor: A point-contact study of Mn-substituted MgB2 single crystals

    Get PDF
    We present the first results of directional point-contact measurements in Mg_{1-x}Mn_{x}B_2 single crystals, with x up to 0.015 and bulk T_c down to 13.3 K. The order parameters Delta_{sigma} and Delta_{pi} were obtained by fitting the conductance curves with the two-band Blonder-Tinkham-Klapwijk (BTK) model. Both Delta_{pi} and Delta_{sigma} decrease with the critical temperature of the junctions T_c^A, but remain clearly distinct up to the highest Mn content. Once analyzed within the Eliashberg theory, the results indicate that spin-flip scattering is dominant in the sigma band, as also confirmed by first-principle band structure calculations.Comment: 4 pages, 5 eps figures. New theoretical results added, text and some figures changed. References adde

    Huge field-effect surface charge injection and conductance modulation in metallic thin films by electrochemical gating

    Get PDF
    The field-effect technique, popular thanks to its application in common field-effect transistors, is here applied to metallic thin films by using as a dielectric a novel polymer electrolyte solution. The maximum injected surface charge, determined by a suitable modification of a classic method of electrochemistry called double-step chronocoulometry, reached more than 4 × 10 15 charges/cm 2 . At room temperature, relative variations of resistance up to 8%, 1.9% and 1.6% were observed in the case of gold, silver and copper, respectively and, if the films are thick enough (≥25 nm), results can be nicely explained within a free-electron model with parallel resistive channels. The huge charge injections achieved make this particular field-effect technique very promising for a vast variety of materials such as unconventional superconductors, graphene and 2D-like materials. © 2012 Elsevier B.V

    Ultra-compact binary neural networks for human activity recognition on RISC-V processors

    Get PDF
    Human Activity Recognition (HAR) is a relevant inference task in many mobile applications. State-of-the-art HAR at the edge is typically achieved with lightweight machine learning models such as decision trees and Random Forests (RFs), whereas deep learning is less common due to its high computational complexity. In this work, we propose a novel implementation of HAR based on deep neural networks, and precisely on Binary Neural Networks (BNNs), targeting low-power general purpose processors with a RISC-V instruction set. BNNs yield very small memory footprints and low inference complexity, thanks to the replacement of arithmetic operations with bit-wise ones. However, existing BNN implementations on general purpose processors impose constraints tailored to complex computer vision tasks, which result in over-parametrized models for simpler problems like HAR. Therefore, we also introduce a new BNN inference library, which targets ultra-compact models explicitly. With experiments on a single-core RISC-V processor, we show that BNNs trained on two HAR datasets obtain higher classification accuracy compared to a state-of-the-art baseline based on RFs. Furthermore, our BNN reaches the same accuracy of a RF with either less memory (up to 91%) or more energy-efficiency (up to 70%), depending on the complexity of the features extracted by the RF

    Point-contact Andreev-reflection spectroscopy in Fe(Te,Se) films: multiband superconductivity and electron-boson coupling

    Full text link
    We report on a study of the superconducting order parameter in Fe(Te1x_{1-x}Sex_{x}) thin films (with different Se contents: x=0.3, 0.4, 0.5) by means of point-contact Andreev-reflection spectroscopy (PCARS). The PCARS spectra show reproducible evidence of multiple structures, namely two clear conductance maxima associated to a superconducting gap of amplitude ΔE2.75kBTc\Delta_E \simeq 2.75 k_B T_c and additional shoulders at higher energy that, as we show, are the signature of the strong interaction of charge carriers with a bosonic mode whose characteristic energy coincides with the spin-resonance energy. The details of some PCARS spectra at low energy suggest the presence of a smaller and not easily discernible gap of amplitude ΔH1.75kBTc\Delta_H \simeq 1.75 k_B T_c. The existence of this gap and its amplitude are confirmed by PCARS measurements in Fe(Te1x_{1-x}Sex_{x}) single crystals. The values of the two gaps ΔE\Delta_E and ΔH\Delta_H, once plotted as a function of the local critical temperature TcAT_c^A, turn out to be in perfect agreement with the results obtained by various experimental techniques reported in literature.Comment: 8 pages, 6 figures. This is an author-created, un-copyedited version of an article published in Supercond. Sci. Technol. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/0953-2048/27/12/12401
    corecore