15 research outputs found
The spectral properties of the Falicov-Kimball model in the weak-coupling limit
The and electron density of states of the one-dimensional
Falicov-Kimball model are studied in the weak-coupling limit by exact
diagonalization calculations. The resultant behaviors are used to examine the
-electron gap (), the -electron gap (), and the
-electron gap () as functions of the -level energy
and hybridization . It is shown that the spinless Falicov-Kimball model
behaves fully differently for zero and finite hybridization between and
states. At zero hybridization the energy gaps do not coincide (), and the activation gap vanishes
discontinuously at some critical value of the -level energy . On the
other hand, at finite hybridization all energy gaps coincide and vanish
continuously at the insulator-metal transition point . The
importance of these results for a description of real materials is discussed.Comment: 10 pages, 7 figures, LaTe
Stability of the Black Hole Horizon and the Landau Ghost
The stability of the black hole horizon is demanded by both cosmic censorship
and the generalized second law of thermodynamics. We test the consistency of
these principles by attempting to exceed the black hole extremality condition
in various process in which a U(1) charge is added to a nearly extreme
Reissner--Nordstr\"om black hole charged with a {\it different\/} type of U(1)
charge. For an infalling spherical charged shell the attempt is foiled by the
self--Coulomb repulsion of the shell. For an infalling classical charge it
fails because the required classical charge radius exceeds the size of the
black hole. For a quantum charge the horizon is saved because in order to avoid
the Landau ghost, the effective coupling constant cannot be large enough to
accomplish the removal.Comment: 12 pages, RevTe
Nonlinear sigma model of a spin ladder containing a static single hole
In this letter we extend the nonlinear sigma model describing pure spin
ladders with an arbitrary number of legs to the case of ladders containing a
single static hole. A simple immediate application of this approach to
classical ladders is worked out.Comment: 17 pages, 2 figure
A New Scenario on the Metal-Insulator Transition in VO2
The metal-insulator transition in VO2 was investigated using the three-band
Hubbard model, in which the degeneracy of the 3d orbitals, the on-site Coulomb
and exchange interactions, and the effects of lattice distortion were
considered. A new scenario on the phase transition is proposed, where the
increase in energy level separation among the t_2g orbitals caused by the
lattice distortion triggers an abrupt change in the electronic configuration in
doubly occupied sites from an S=1 Hund's coupling state to a spin S=0 state
with much larger energy, and this strongly suppresses the charge fluctuation.
Although the material is expected to be a Mott-Hubbard insulator in the
insulating phase, the metal-to-insulator transition is not caused by an
increase in relative strength of the Coulomb interaction against the electron
hopping as in the usual Mott transition, but by the level splitting among the
t_2g orbitals against the on-site exchange interaction. The metal-insulator
transition in Ti2O3 can also be explained by the same scenario. Such a large
change in the 3d orbital occupation at the phase transition can be detected by
linear dichroic V 2p x-ray absorption measurements.Comment: 5 pages, 5 figures, to be published in J. Phys. Soc. Jpn. Vol. 72 No.
1
Magnetic excitations and structural change in the S=1/2 quasi-one-dimensional magnet Sr_{14-x}Y_{x}Cu_{24}O_{41} (0<x<1)
Neutron scattering measurements have been performed on the S=1/2
quasi-one-dimensional system Sr_{14-x}Y_{x}Cu_{24}O_{41}, which has both simple
chains and two-leg ladders of copper ions. We observed that when a small amount
of yttrium is substituted for strontium, which is expected to reduce the number
of holes, the dimerized state and the structure in the chain are changed
drastically. The inelastic peaks originating from the dimerized state of the
chain becomes broader in energy but not in momentum space. This implies that
the dimerized state becomes unstable but the spin correlations are unchanged
with yttrium substitution. Furthermore, it was observed that nuclear Bragg peak
intensities originating from the chain show strong temperature and x
dependence, which suggests that the chains slide along the c axis as
temperature and x are varied.Comment: 5 pages, 6 figures, to appear in Phys. Rev.
Phase Transitions in Bilayer Heisenberg Model with General Couplings
The ground state properties and phase diagram of the bilayer square-lattice
Heisenberg model are studied in a broad parameter space of intralayer exchange
couplings, assuming an antiferromagnetic coupling between constituent layers.
In the classical limit, the model exhibits three phases: two of these are
ordered phases specified by the ordering wave vectors (pi,pi;pi) and (0,0;pi),
where the third component of each indecates the antiferromagnetic orientation
between layers, while another one is a canted phase, stabilized by competing
interactions. The effects of quantum fluctuations in the model with S=1/2 have
been explored by means of dimer mean-field theory, small-system exact
diagonalization, and high-order perturbation expansions about the interlayer
dimer limit.Comment: 15 pages, LaTeX, 12 figures, uses jpsj.sty, revised version: some
discussion to a related model and references added, submitted to the Journal
of the Physical Society of Japa
Intrinsic Josephson Effect in the Layered Two-dimensional t-J Model
The intrinsic Josephson effect in the high-Tc superconductors is studied
using the layered two-dimensional t-J model. The d.c.Josephson current which
flows perpendicular to the t-J planes is obtained within the mean-field
approximation and the Gutzwiller approximation. We find that the Josephson
current has its maximum near the optimum doping region as a function of the
doping rate.Comment: 4 pages, 3 figure
Critical Ising modes in low-dimensional Kondo insulators
We present an Ising-like intermediate phase for one-dimensional Kondo
insulator systems. Resulting from a spinon splitting, its low-energy
excitations are critical Ising modes, whereas the triplet sector has a spectral
gap. It should occur as long as the RKKY oscillation amplitude dominates over
any direct exchange between localized spins. The chiral fixed point, however,
becomes unstable in the far Infra-Red limit due to prevalent fluctuations among
localized spins which induce gapless triplet excitations in the spectrum. Based
on previous numerical results, we obtain a paramagnetic disordered state ruled
by the correlation length of the single impurity Kondo model.Comment: 7 pages, RevTeX; last version: to be published in Physical Review
Antiferromagnetism and phase separation in electronic models for doped transition-metal oxides
We investigate the ground state properties of electronic models for doped
manganites and nickelates. An effective t - J like Hamiltonian is derived from
the case of strong Hund coupling between the conduction electrons and localized
spins by means of the projection technique. An attractive interaction for
conduction electrons and an anti-ferromagnetic coupling of the localized spin
are obtained. A large ratio of the attraction to effective electron hopping,
which is modulated by the spin background, will lead to the phase separation.
The anti-ferromagnetic phase and the phase separation appear in the case of
either high or low density of electrons. The possible relevance of the phase
separation to the charge stripe phase in the manganites and nickelates is
discussed.Comment: 12 pages, ReVTEX, 3 figures. To appear in Phys. Rev. B (RC), (01Oct.,
1998