research

The spectral properties of the Falicov-Kimball model in the weak-coupling limit

Abstract

The ff and dd electron density of states of the one-dimensional Falicov-Kimball model are studied in the weak-coupling limit by exact diagonalization calculations. The resultant behaviors are used to examine the dd-electron gap (Δd\Delta_{d}), the ff-electron gap (Δf\Delta_{f}), and the fdfd-electron gap (Δfd\Delta_{fd}) as functions of the ff-level energy EfE_f and hybridization VV. It is shown that the spinless Falicov-Kimball model behaves fully differently for zero and finite hybridization between ff and dd states. At zero hybridization the energy gaps do not coincide (ΔdΔfΔfd\Delta_{d}\neq \Delta_{f} \neq \Delta_{fd}), and the activation gap Δfd\Delta_{fd} vanishes discontinuously at some critical value of the ff-level energy EfcE_{fc}. On the other hand, at finite hybridization all energy gaps coincide and vanish continuously at the insulator-metal transition point Ef=EfcE_f=E_{fc}. The importance of these results for a description of real materials is discussed.Comment: 10 pages, 7 figures, LaTe

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 27/12/2021
    Last time updated on 02/01/2020