151 research outputs found

    Anomalous formation of trihydrogen cations from water on nanoparticles

    Get PDF
    The H3 + ion plays a key role in interstellar chemistry and can be formed from organic compounds upon interaction with charged particles or radiation. Here the authors demonstrate that H3 + can also be formed from water adsorbed on silica nanoparticles exposed to intense laser pulses, conditions that mimic the impact of charged particles on dust in astrophysical settings

    Performance of edible cactus (Opuntiaficus-indica) in saline environments

    Get PDF
    Edible cactus [Opuntiaficus-indica (L.) Mill.] has been used as fruit, vegetable, forage and wide range of commercial purposes in arid regions. It has high efficiency to produce biomass per unit water use due to specialized photosynthetic mechanism. Owing to its tolerance to low input and adverse conditions, it has ample scope for introduction and cultivation in arid and saline parts of world. A field experiment was conducted to standardise planting techniques and irrigation requirements of cactus at Hisar (Haryana) during 2008-2010. Cactus clones 1270, 1271, 1280 and 1287 were planted on ridges, flat beds and furrows with no irrigation, irrigations at one month and two months interval using saline ground water. Raised bed plantations resulted in better survival and plant height. The survival was higher without irrigation but the plant height was higher with monthly irrigation. Clone 1270 sprouted earliest and highest survival was recorded in clone 1271. To assess salinity and alkalinity tolerance, clone 1280, was planted at Karnal. Three soil salinity (ECe) levels and four pH levels were maintained along with no fertilizer, NPK and FYM. This clone was found to tolerate moderate salinity (52 mM) but sensitive to pH and had negligible growth at pH 9.8. Application of NPK and FYM helped in mitigating the effects of salt stress. Raised bed planting was advantageous and once established, Opuntia can sustain saline groundwater irrigation for optimum growth and production

    Role of live microbial feed supplements with reference to anaerobic fungi in ruminant productivity: A review

    Get PDF
    To keep the concept of a safe food supply to the consumers, animal feed industries world over are showing an increasing interest in the direct-fed microbials (DFM) for improved animal performance in terms of growth or productivity. This becomes all the more essential in a situation, where a number of the residues of antibiotics and/or other growth stimulants reach in milk and meat with a number of associated potential risks for the consumers. Hence, in the absence of growth stimulants, a positive manipulation of the rumen microbial ecosystem to enhance the feedstuff utilization for improved production efficiency by ruminants has become of much interest to the researchers and entrepreneurs. A few genera of live microbes (i.e., bacteria, fungi and yeasts in different types of formulations from paste to powder) are infrequently used as DFM for the domestic ruminants. These DFM products are live microbial feed supplements containing naturally occurring microbes in the rumen. Among different DFM possibilities, anaerobic rumen fungi (ARF) based additives have been found to improve ruminant productivity consistently during feeding trials. Administration of ARF during the few trials conducted, led to the increased weight gain, milk production, and total tract digestibility of feed components in ruminants. Anaerobic fungi in the rumen display very strong cell-wall degrading cellulolytic and xylanolytic activities through rhizoid development, resulting in the physical disruption of feed structure paving the way for bacterial action. Significant improvements in the fiber digestibility were found to coincide with increases in ARF in the rumen indicating their role. Most of the researches based on DFM have indicated a positive response in nutrient digestion and methane reducing potential during in vivo and/or in vitro supplementation of ARF as DFM. Therefore, DFM especially ARF will gain popularity but it is necessary that all the strain

    New aspects and strategies for methane mitigation from ruminants.

    Get PDF
    The growing demand for sustainable animal production is compelling researchers to explore the potential approaches to reduce emissions of greenhouse gases from livestock that are mainly produced by enteric fermentation. Some potential solutions, for instance, the use of chemical inhibitors to reduce methanogenesis, are not feasible in routine use due to their toxicity to ruminants, inhibition of efficient rumen function or other transitory effects. Strategies, such as use of plant secondary metabolites and dietary manipulations have emerged to reduce the methane emission, but these still require extensive research before these can be recommended and deployed in the livestock industry sector. Furthermore, immunization vaccines for methanogens and phages are also under investigation for mitigation of enteric methanogenesis. The increasing knowledge of methanogenic diversity in rumen, DNA sequencing technologies and bioinformatics have paved the way for chemogenomic strategies by targeting methane producers. Chemogenomics will help in finding target enzymes and proteins, which will further assist in the screening of natural as well chemical inhibitors. The construction of a methanogenic gene catalogue through these approaches is an attainable objective. This will lead to understand the microbiome function, its relation with the host and feeds, and therefore, will form the basis of practically viable and eco-friendly methane mitigation approaches, while improving the ruminant productivity

    Stability Assessment of p i n Perovskite Photovoltaic Mini Modules Utilizing Different Top Metal Electrodes

    Get PDF
    Long term stability is one of the major challenges for p i n type perovskite solar modules PSMs . Here, we demonstrate the fabrication of fully laser patterned series interconnected p i n perovskite mini modules, in which either single Cu or Ag layers are compared with Cu Au metal bilayer top electrodes. According to the scanning electron microscopy measurements, we found that Cu or Ag top electrodes often exhibit flaking of the metal upon P3 top contact removal laser patterning. For Cu Au bilayer top electrodes, metal flaking may cause intermittent short circuits between interconnected sub cells during operation, resulting in fluctuations in the maximum power point MPP . Here, we demonstrate Cu Au metal bilayer based PSMs with an efficiency of 18.9 on an active area of 2.2 cm2 under continuous 1 sun illumination. This work highlights the importance of optimizing the top contact composition to tackle the operational stability of mini modules, and could help to improve the feasibility of large area module deployment for the commercialization of perovskite photovoltaic

    Women candidates and party nomination trends in India: evidence from the 2009 general election

    Get PDF
    More women MPs than ever before were elected to the lower house of the national parliament of India in the 2009 General Election. Yet, the increase in women’s presence in the Lok Sabha cannot necessarily be attributed to the increased willingness of political parties to field more women candidates, despite rhetorical party political support for increasing women’s participation in political institutions. This article analyses party political nomination of women as candidates in the 2009 election, and finds significant variations in levels of nomination across parties and across India’s states. The article also examines in detail the nomination of female candidates by the two largest political parties, the Indian National Congress party and the Bharatiya Janata Party, both of which support proposals for introducing reserved seats for women in national and state legislatures. The findings reject the proposition that parties only nominate women in unwinnable seats, but finds support for the proposition that parties are risk averse when it comes to nominating women, and that this can restrict the number of women nominated for election. The article concludes with some further questions for future research on gender and political recruitment in India

    Encapsulation and outdoor testing of Perovskite Solar Cells comparing industrially relevant process with a simplified lab procedure

    Get PDF
    Perovskite solar cells PSCs have shown great potential for next generation photovoltaics. One of the main barriers to their commercial use is their poor long term stability under ambient conditions and, in particular, their sensitivity to moisture and oxygen. Therefore, several encapsulation strategies are being developed in an attempt to improve the stability of PSCs in a humid environment. The lack of common testing procedures makes the comparison of encapsulation strategies challenging. In this paper, we optimized and investigated two common encapsulation strategies lamination based glass glass encapsulation for outdoor operation and commercial use COM and a simple glue based encapsulation mostly utilized for laboratory research purposes LAB . We compare both approaches and evaluate their effectiveness to impede humidity ingress under three different testing conditions on shelf storage at 21 C and 30 relative humidity RH ISOS D1 , damp heat exposure at 85 C and 85 RH ISOS D3 , and outdoor operational stability continuously monitoring device performance for 10 months under maximum power point tracking on a roof top test site in Berlin, Germany ISOS O3 . LAB encapsulation of perovskite devices consists of glue and a cover glass and can be performed at ambient temperature, in an inert environment without the need for complex equipment. This glue based encapsulation procedure allowed PSCs to retain more than 93 of their conversion efficiency after 1566 h of storage in ambient atmosphere and, therefore, is sufficient and suitable as an interim encapsulation for cell transport or short term experiments outside an inert atmosphere. However, this simple encapsulation does not pass the IEC 61215 damp heat test and hence results in a high probability of fast degradation of the cells under outdoor conditions. The COM encapsulation procedure requires the use of a vacuum laminator and the cells to be able to withstand a short period of air exposure and at least 20 min at elevated temperatures in our case, 150 C . This encapsulation method enabled the cells to pass the IEC 61215 damp heat test and even to retain over 95 of their initial efficiency after 1566 h in a damp heat chamber. Above all, passing the damp heat test for COM encapsulated devices translates to devices fully retaining their initial efficiency for the full duration of the outdoor test gt;10 months . To the best of the authors knowledge, this is one of the longest outdoor stability demonstrations for PSCs published to date. We stress that both encapsulation approaches described in this work are useful for the scientific community as they fulfill different purposes the COM for the realization of prototypes for long term real condition validation and, ultimately, commercialization of perovskite solar cells and the LAB procedure to enable testing and carrying out experiments on perovskite solar cells under noninert condition

    Laser based series interconnection of chalcopyrite und perovskite solar cells Analysis of material modifications and implications for achieving small dead area widths

    Get PDF
    Both nanosecond pulses and picosecond laser pulses are used for P2 patterning of chalcopyrite Cu In,Ga Se2, CIGSe and metal halide perovskite solar cell absorber layers. For CIGSe, the range of the modified material visualized by photoluminescence imaging is significantly wider than the actual physical linewidth, since energy input by the laser pulses leads to material modification in the vicinity of the scribed lines. This effect does not occur with the perovskite absorber layers, where there is no apparent influence on the edge regions. From numerical calculations of the temperature depth profiles and the surface temperature distributions it is concluded that this effect is due to the significantly lower perovskite absorber layer thickness compared to CIGSe and the nevertheless significantly higher laser fluence required for perovskite ablation. The unaffected edge regions around the P2 line in the perovskite enabled a reduction of the dead area width in the fabrication of 3 segmented mini modules, which could be significantly reduced from 430 to 230 m, while increasing the aperture area power conversion efficiency and also the geometric fill factor, which could be increased up to 94.

    Imaging elliptically polarized infrared near-fields on nanoparticles by strong-field dissociation of functional surface groups

    Get PDF
    We investigate the strong-field ion emission from the surface of isolated silica nanoparticles aerosolized from an alcoholic solution, and demonstrate the applicability of the recently reported near-field imaging at 720 nm [Rupp et al., Nat. Comm., 10(1):4655, 2019] to longer wavelength (2 ÎĽm) and polarizations with arbitrary ellipticity. Based on the experimental observations, we discuss the validity of a previously introduced semi-classical model, which is based on near-field driven charge generation by a Monte-Carlo approach and classical propagation. We furthermore clarify the role of the solvent in the surface composition of the nanoparticles in the interaction region. We find that upon injection of the nanoparticles into the vacuum, the alcoholic solvent evaporates on millisecond time scales, and that the generated ions originate predominantly from covalent bonds with the silica surface rather than from physisorbed solvent molecules. These findings have important implications for the development of future theoretical models of the strong-field ion emission from silica nanoparticles, and the application of near-field imaging and reaction dynamics of functional groups on isolated nanoparticles
    • …
    corecore