122 research outputs found

    Cooperative AI: machines must learn to find common ground

    Get PDF
    Artificial-intelligence assistants and recommendation algorithms interact with billions of people every day, influencing lives in myriad ways, yet they still have little understanding of humans. Self-driving vehicles controlled by artificial intelligence (AI) are gaining mastery of their interactions with the natural world, but they are still novices when it comes to coordinating with other cars and pedestrians or collaborating with their human operators

    Effects of elevated [CO2 ] on maize defence against mycotoxigenic Fusarium verticillioides.

    Get PDF
    Maize is by quantity the most important C4 cereal crop; however, future climate changes are expected to increase maize susceptibility to mycotoxigenic fungal pathogens and reduce productivity. While rising atmospheric [CO2 ] is a driving force behind the warmer temperatures and drought, which aggravate fungal disease and mycotoxin accumulation, our understanding of how elevated [CO2 ] will effect maize defences against such pathogens is limited. Here we report that elevated [CO2 ] increases maize susceptibility to Fusarium verticillioides proliferation, while mycotoxin levels are unaltered. Fumonisin production is not proportional to the increase in F. verticillioides biomass, and the amount of fumonisin produced per unit pathogen is reduced at elevated [CO2 ]. Following F. verticillioides stalk inoculation, the accumulation of sugars, free fatty acids, lipoxygenase (LOX) transcripts, phytohormones and downstream phytoalexins is dampened in maize grown at elevated [CO2 ]. The attenuation of maize 13-LOXs and jasmonic acid production correlates with reduced terpenoid phytoalexins and increased susceptibility. Furthermore, the attenuated induction of 9-LOXs, which have been suggested to stimulate mycotoxin biosynthesis, is consistent with reduced fumonisin per unit fungal biomass at elevated [CO2 ]. Our findings suggest that elevated [CO2 ] will compromise maize LOX-dependent signalling, which will influence the interactions between maize and mycotoxigenic fungi

    The inXuence of stimulus direction and eccentricity on pro-and anti-saccades in humans

    Get PDF
    Abstract We examined the sensory and motor inXuences of stimulus eccentricity and direction on saccadic reaction times (SRTs), direction-of-movement errors, and saccade amplitude for stimulus-driven (prosaccade) and volitional (antisaccade) oculomotor responses in humans. Stimuli were presented at Wve eccentricities, ranging from 0.5° to 8°, and in eight radial directions around a central Wxation point. At 0.5° eccentricity, participants showed delayed SRT and increased direction-of-movement errors consistent with misidentiWcation of the target and Wxation points. For the remaining eccentricities, horizontal saccades had shorter mean SRT than vertical saccades. Stimuli in the upper visual Weld trigger overt shifts in gaze more easily and faster than in the lower visual Weld: prosaccades to the upper hemiWeld had shorter SRT than to the lower hemiWeld, and more anti-saccade direction-of-movement errors were made into the upper hemiWeld. With the exception of the 0.5° stimuli, SRT was independent of eccentricity. Saccade amplitude was dependent on target eccentricity for prosaccades, but not for antisaccades within the range we tested. Performance matched behavioral measures described previously for monkeys performing the same tasks, conWrming that the monkey is a good model for the human oculomotor function. We conclude that an upper hemiWeld bias lead to a decrease in SRT and an increase in direction errors

    Tectono-stratigraphic evolution and crustal architecture of the Orphan Basin during North Atlantic rifting

    Get PDF
    The Orphan Basin is located in the deep offshore of the Newfoundland margin, and it is bounded by the continental shelf to the west, the Grand Banks to the south, and the continental blocks of Orphan Knoll and Flemish Cap to the east. The Orphan Basin formed in Mesozoic time during the opening of the North Atlantic Ocean between eastern Canada and western Iberia–Europe. This work, based on well data and regional seismic reflection profiles across the basin, indicates that the continental crust was affected by several extensional episodes between the Jurassic and the Early Cretaceous, separated by events of uplift and erosion. The preserved tectono-stratigraphic sequences in the basin reveal that deformation initiated in the eastern part of the Orphan Basin in the Jurassic and spread towards the west in the Early Cretaceous, resulting in numerous rift structures filled with a Jurassic–Lower Cretaceous syn-rift succession and overlain by thick Upper Cretaceous to Cenozoic post-rift sediments. The seismic data show an extremely thinned crust (4–16 km thick) underneath the eastern and western parts of the Orphan Basin, forming two sub-basins separated by a wide structural high with a relatively thick crust (17 km thick). Quantifying the crustal architecture in the basin highlights the large discrepancy between brittle extension localized in the upper crust and the overall crustal thinning. This suggests that continental deformation in the Orphan Basin involved, in addition to the documented Jurassic and Early Cretaceous rifting, an earlier brittle rift phase which is unidentifiable in seismic data and a depth-dependent thinning of the crust driven by localized lower crust ductile flow

    Endothelial Cells in Co-culture Enhance Embryonic Stem Cell Differentiation to Pancreatic Progenitors and Insulin-Producing Cells through BMP Signaling

    Get PDF
    Endothelial cells (ECs) represent the major component of the embryonic pancreatic niche and play a key role in the differentiation of insulin-producing β cells in vivo. However, it is unknown if ECs promote such differentiation in vitro. We investigated whether interaction of ECs with mouse embryoid bodies (EBs) in culture promotes differentiation of pancreatic progenitors and insulin-producing cells and the mechanisms involved. We developed a co-culture system of mouse EBs and human microvascular ECs (HMECs). An increase in the expression of the pancreatic markers PDX-1, Ngn3, Nkx6.1, proinsulin, GLUT-2, and Ptf1a was observed at the interface between EBs and ECs (EB-EC). No expression of these markers was found at the periphery of EBs cultured without ECs or those co-cultured with mouse embryonic fibroblasts (MEFs). At EB-EC interface, proinsulin and Nkx6.1 positive cells co-expressed phospho-Smad1/5/8 (pSmad1/5/8). Therefore, EBs were treated with HMEC conditioned media (HMEC-CM) suspecting soluble factors involved in bone morphogenetic protein (BMP) pathway activation. Upregulation of PDX-1, Ngn3, Nkx6.1, insulin-1, insulin-2, amylin, SUR1, GKS, and amylase as well as down-regulation of SST were detected in treated EBs. In addition, higher expression of BMP-2/-4 and their receptor (BMPR1A) were also found in these EBs. Recombinant human BMP-2 (rhBMP-2) mimicked the effects of the HMEC-CM on EBs. Noggin (NOG), a BMP antagonist, partially inhibited these effects. These results indicate that the differentiation of EBs to pancreatic progenitors and insulin-producing cells can be enhanced by ECs in vitro and that BMP pathway activation is central to this process

    Reaping the benefits of digitisation:Pilot study exploring revenue generation from digitised collections through technological Innovation

    Get PDF
    In the last decade significant resources have been invested for the digitisation of the collections of a large number of museums and galleries worldwide. In Europe alone, 10 million EUR is annually invested in Europeana (Europeana 2014). However, as we gradually move on from “the start-up phase” of digitisation (Hughes 2004), revenue generation and sustainability must be considered (Hughes 2004). Even beyond digitisation, generating revenue through innovation and in particular “finding new business models to sustain funding” (Simon 2011) ranks amongst museums’ top challenges (Simon 2011). More importantly, despite the significant wealth of digitised assets museums now own, little has been done to investigate ways these institutions could financially benefit from their digitised collections. For art institutions in particular, this has been largely limited to the sale of image licenses, with the fear of losing this revenue posing as one of the key reasons art museums are reluctant to join the Open Content movement (Kapsalis 2016). This paper examines how recent technological advancements, such as image recognition and Print-on-Demand automation, can be utilised to take advantage of the wealth of digitised artworks museums and galleries have in their possession. A pilot study of the proposed solution at the State Museum of Contemporary Art (SMCA) in Thessaloniki, Greece, is covered and the findings are examined. Early feedback indicates that there is a significant potential in the utilisation of the aforementioned technologies for the monetisation of digitised collections. However, challenges such as blending the real-world experience with the digital experience, as well as flattening the learning curve of the technological solution for museum visitors, need to be addressed. Based on the pilot study at SMCA, this paper investigates how emerging technologies can be utilised to facilitate revenue generation for all museums and galleries with digitised collections

    Toward estimating the impact of changes in immigrants' insurance eligibility on hospital expenditures for uncompensated care

    Get PDF
    BACKGROUND: The Personal Responsibility and Work Opportunity Reconciliation Act (PRWORA) of 1996 gave states the option to withdraw Medicaid coverage of nonemergency care from most legal immigrants. Our goal was to assess the effect of PRWORA on hospital uncompensated care in the United States. METHODS: We collected the following state-level data for the period from 1994 through 1999: foreign-born, noncitizen population and health uninsurance rates (US Census Current Population Survey); percentage of teaching hospitals (American Hospital Association Annual Survey of Hospitals); and each state's decision whether to implement the PRWORA Medicaid bar for legal permanent residents or to continue offering nonemergency Medicaid coverage using state-only funds (Urban Institute). We modeled uncompensated care expenditures by state (also from the Annual Survey of Hospitals) in both univariate and multivariable regression analyses. RESULTS: When measured at the state level, there was no significant relationship between uncompensated care expenditures and states' percentage of noncitizen immigrants. Uninsurance rates were the only significant factor in predicting uncompensated hospital care expenditures by state. CONCLUSIONS: Reducing the number of uninsured patients would most surely reduce hospital expenditures for uncompensated care. However, data limitations hampered our efforts to obtain a monetary estimate of hospitals' financial losses due specifically to the immigrant eligibility changes in PRWORA. Quantifying the impact of these provisions on hospitals will require better data sources

    Posters display III clinical outcome and PET

    Get PDF

    A competitive integration model of exogenous and endogenous eye movements

    Get PDF
    We present a model of the eye movement system in which the programming of an eye movement is the result of the competitive integration of information in the superior colliculi (SC). This brain area receives input from occipital cortex, the frontal eye fields, and the dorsolateral prefrontal cortex, on the basis of which it computes the location of the next saccadic target. Two critical assumptions in the model are that cortical inputs are not only excitatory, but can also inhibit saccades to specific locations, and that the SC continue to influence the trajectory of a saccade while it is being executed. With these assumptions, we account for many neurophysiological and behavioral findings from eye movement research. Interactions within the saccade map are shown to account for effects of distractors on saccadic reaction time (SRT) and saccade trajectory, including the global effect and oculomotor capture. In addition, the model accounts for express saccades, the gap effect, saccadic reaction times for antisaccades, and recorded responses from neurons in the SC and frontal eye fields in these tasks. © The Author(s) 2010
    corecore