64 research outputs found

    Diurnal and seasonal variations of <i>hm</i>F2 deduced from digitalionosonde over New Delhi and its comparison with IRI 2001

    Get PDF
    International audienceUsing digital ionosonde observations at a low mid-latitude station, New Delhi (28.6°N, 77.2°E, dip 42.4°N), we have derived hourly monthly values of hmF2 (the real height corresponding to the peak electron density in the F2-region), employing both the Dudeney (1983) and Bilitza (1990) empirical formulations for the period from January 2001 to August 2002. The diurnal and seasonal variations of hmF2 are analyzed. Further, to assess the predictability of the latest available model, International Reference Ionosphere, (IRI-2001), we have obtained the median values of hmF2 derived from M(3000)F2 for each hour during different seasons and compare these with the model. Our results show that both the Dudeney (1983) and Bilitza (1990) formulations reveal more or less a similar diurnal trend of hmF2, with higher values around midnight and lower during sunrise, in all the seasons. It is also noted that the hmF2 shows a larger variability around midnight than by daytime, in all the seasons. Further, the study shows that median values of observed hmF2, using both formulations, are somewhat larger than those predicted by the IRI, in all seasons and at all local times. During summer, the IRI values agree comparatively well with the observations, especially during daytime. Major discrepancies occur when the IRI underestimates observed hmF2 for local times from about 14:00 LT to 18:00 LT and 04:00 LT to 05:00 LT during winter and equinox, where the percentage deviation of the observed hmF2 values with respect to the IRI model varies from 15 to 25%. The difference between the model and observations, outside this time period, remains less than 20% during all the seasons. Key words. Ionosphere (modelling and forecasting; equatorial ionosphere

    DYSTOCIA DUE TO FETAL ANASARCA COUPLED WITH AMELIA OF ONE FOETUS IN TWIN PREGNANCY IN A BUFFALO

    Get PDF
    ABSTRACT This communication reports a case of dystocia due to foetal anasarca coupled with amelia of one foetus in a twin pregnancy and its successful per-vaginal management in a Mehsana buffalo

    Contribution of large scale geophysical survey to analysis of the evolution of the western boundary of the city of Allonnes (Sarthes, France): Integration of Google images, the Napoleonic cadastre and large magnetic surveys

    Get PDF
    How is it possible to comprehend the anthropogenic evolution of landscapes? A. Levy, in his book about urban morphology, states that “the concept of the layouts’ morphology covers how these layouts are distributed within the space of the whole city according to the various stages of urban growths and their expansion procedures”. Thus, the urban binomial (couple) networks/frames perfectly explains the construction process of the towns’ composition. Mapping of Allonnes’ urban composition demons..

    Bioengineering bacterial encapsulin nanocompartments as targeted drug delivery system

    Get PDF
    The development of Drug Delivery Systems (DDS) has led to increasingly efficient therapies for the treatment and detection of various diseases. DDS use a range of nanoscale delivery platforms produced from polymeric of inorganic materials, such as micelles, and metal and polymeric nanoparticles, but their variant chemical composition make alterations to their size, shape, or structures inherently complex. Genetically encoded protein nanocages are highly promising DDS candidates because of their modular composition, ease of recombinant production in a range of hosts, control over assembly and loading of cargo molecules and biodegradability. One example of naturally occurring nanocompartments are encapsulins, recently discovered bacterial organelles that have been shown to be reprogrammable as nanobioreactors and vaccine candidates. Here we report the design and application of a targeted DDS platform based on the Thermotoga maritima encapsulin reprogrammed to display an antibody mimic protein called Designed Ankyrin repeat protein (DARPin) on the outer surface and to encapsulate a cytotoxic payload. The DARPin9.29 chosen in this study specifically binds to human epidermal growth factor receptor 2 (HER2) on breast cancer cells, as demonstrated in an in vitro cell culture model. The encapsulin-based DDS is assembled in one step in vivo by co-expressing the encapsulin-DARPin9.29 fusion protein with an engineered flavin-binding protein mini-singlet oxygen generator (MiniSOG), from a single plasmid in Escherichia coli. Purified encapsulin-DARPin_miniSOG nanocompartments bind specifically to HER2 positive breast cancer cells and trigger apoptosis, indicating that the system is functional and specific. The DDS is modular and has the potential to form the basis of a multi-receptor targeted system by utilising the DARPin screening libraries, allowing use of new DARPins of known specificities, and through the proven flexibility of the encapsulin cargo loading mechanism, allowing selection of cargo proteins of choice

    Assessment of the physical and mechanical properties of plaster of Paris bandage cast used as a splinting and casting materials

    Get PDF
    Abstract Aim: To assess the physical and mechanical properties of plaster of Paris (POP) bandage cast used as a splinting and casting materials. Materials and Methods: POP casts were divided into three Groups A, B and C with 2, 3 and 8 layer for POP bandage, respectively (n=6 in each group). Handling characters, technical easiness or difficulties, setting time, weight, diameter and thickness of the casts were recorded for different groups. The casts were mounted on universal testing machine and axial load was applied @ 10 mm/min until failure. The load deflection graphs were plotted. The maximum force at which failure of the casts occurred was recorded. Stress, strain, modulus of elasticity (MOE) and stiffness of casts were calculated. Result: Construction of POP bandage cast was messy and required 45-60 min for hardening. 8 layer POP cast was comparatively heavier in weight and thicker in cross section than 3 layer cast followed by 2 layer cast. Under axial compression, the load bearing capacity of 8 layer POP casts was more than 2 and 3 layer cast. Conclusion: The values of load bearing capacity, stress, stiffness and MOE of cast were the highest for 8 layer POP cast followed by 2 and 3 layer cast. Use if splints with POP cast is recommended due to its poor mechanical properties

    Review of nanomaterials in dentistry: interactions with the oral microenvironment, clinical applications, hazards, and benefits.

    Get PDF
    Interest in the use of engineered nanomaterials (ENMs) as either nanomedicines or dental materials/devices in clinical dentistry is growing. This review aims to detail the ultrafine structure, chemical composition, and reactivity of dental tissues in the context of interactions with ENMs, including the saliva, pellicle layer, and oral biofilm; then describes the applications of ENMs in dentistry in context with beneficial clinical outcomes versus potential risks. The flow rate and quality of saliva are likely to influence the behavior of ENMs in the oral cavity, but how the protein corona formed on the ENMs will alter bioavailability, or interact with the structure and proteins of the pellicle layer, as well as microbes in the biofilm, remains unclear. The tooth enamel is a dense crystalline structure that is likely to act as a barrier to ENM penetration, but underlying dentinal tubules are not. Consequently, ENMs may be used to strengthen dentine or regenerate pulp tissue. ENMs have dental applications as antibacterials for infection control, as nanofillers to improve the mechanical and bioactive properties of restoration materials, and as novel coatings on dental implants. Dentifrices and some related personal care products are already available for oral health applications. Overall, the clinical benefits generally outweigh the hazards of using ENMs in the oral cavity, and the latter should not prevent the responsible innovation of nanotechnology in dentistry. However, the clinical safety regulations for dental materials have not been specifically updated for ENMs, and some guidance on occupational health for practitioners is also needed. Knowledge gaps for future research include the formation of protein corona in the oral cavity, ENM diffusion through clinically relevant biofilms, and mechanistic investigations on how ENMs strengthen the tooth structure

    Characterization of an Nmr Homolog That Modulates GATA Factor-Mediated Nitrogen Metabolite Repression in Cryptococcus neoformans

    Get PDF
    Nitrogen source utilization plays a critical role in fungal development, secondary metabolite production and pathogenesis. In both the Ascomycota and Basidiomycota, GATA transcription factors globally activate the expression of catabolic enzyme-encoding genes required to degrade complex nitrogenous compounds. However, in the presence of preferred nitrogen sources such as ammonium, GATA factor activity is inhibited in some species through interaction with co-repressor Nmr proteins. This regulatory phenomenon, nitrogen metabolite repression, enables preferential utilization of readily assimilated nitrogen sources. In the basidiomycete pathogen Cryptococcus neoformans, the GATA factor Gat1/Are1 has been co-opted into regulating multiple key virulence traits in addition to nitrogen catabolism. Here, we further characterize Gat1/Are1 function and investigate the regulatory role of the predicted Nmr homolog Tar1. While GAT1/ARE1 expression is induced during nitrogen limitation, TAR1 transcription is unaffected by nitrogen availability. Deletion of TAR1 leads to inappropriate derepression of non-preferred nitrogen catabolic pathways in the simultaneous presence of favoured sources. In addition to exhibiting its evolutionary conserved role of inhibiting GATA factor activity under repressing conditions, Tar1 also positively regulates GAT1/ARE1 transcription under non-repressing conditions. The molecular mechanism by which Tar1 modulates nitrogen metabolite repression, however, remains open to speculation. Interaction between Tar1 and Gat1/Are1 was undetectable in a yeast two-hybrid assay, consistent with Tar1 and Gat1/Are1 each lacking the conserved C-terminus regions present in ascomycete Nmr proteins and GATA factors that are known to interact with each other. Importantly, both Tar1 and Gat1/Are1 are suppressors of C. neoformans virulence, reiterating and highlighting the paradigm of nitrogen regulation of pathogenesis

    The BLLAST field experiment: Boundary-Layer late afternoon and sunset turbulence

    Get PDF
    Due to the major role of the sun in heating the earth's surface, the atmospheric planetary boundary layer over land is inherently marked by a diurnal cycle. The afternoon transition, the period of the day that connects the daytime dry convective boundary layer to the night-time stable boundary layer, still has a number of unanswered scientific questions. This phase of the diurnal cycle is challenging from both modelling and observational perspectives: it is transitory, most of the forcings are small or null and the turbulence regime changes from fully convective, close to homogeneous and isotropic, toward a more heterogeneous and intermittent state. These issues motivated the BLLAST (Boundary-Layer Late Afternoon and Sunset Turbulence) field campaign that was conducted from 14 June to 8 July 2011 in southern France, in an area of complex and heterogeneous terrain. A wide range of instrumented platforms including full-size aircraft, remotely piloted aircraft systems, remote-sensing instruments, radiosoundings, tethered balloons, surface flux stations and various meteorological towers were deployed over different surface types. The boundary layer, from the earth's surface to the free troposphere, was probed during the entire day, with a focus and intense observation periods that were conducted from midday until sunset. The BLLAST field campaign also provided an opportunity to test innovative measurement systems, such as new miniaturized sensors, and a new technique for frequent radiosoundings of the low troposphere. Twelve fair weather days displaying various meteorological conditions were extensively documented during the field experiment. The boundary-layer growth varied from one day to another depending on many contributions including stability, advection, subsidence, the state of the previous day's residual layer, as well as local, meso- or synoptic scale conditions. Ground-based measurements combined with tethered-balloon and airborne observations captured the turbulence decay from the surface throughout the whole boundary layer and documented the evolution of the turbulence characteristic length scales during the transition period. Closely integrated with the field experiment, numerical studies are now underway with a complete hierarchy of models to support the data interpretation and improve the model representations.publishedVersio
    corecore