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Abstract
In this paper, the approximate controllability of fractional impulsive partial neutral
integrodifferential inclusions with infinite delay in a Hilbert space is studied. By using
the nonlinear alternative of Leray-Schauder type for multivalued maps due to
O’Regan and properties of the α-resolvent operator combined with approximation
techniques, we derive a new set of sufficient conditions for the approximate
controllability of fractional impulsive evolution system under the assumption that the
corresponding linear system is approximately controllable. An example is provided to
illustrate the obtained theory.
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1 Introduction
The study of impulsive functional differential equations is linked to their utility in simulat-
ing processes and phenomena subject to short-time perturbations during their evolution.
The perturbations are performed discretely and their duration is negligible in comparison
with the total duration of the processes and phenomena. One may refer to [–] and the
references therein.

The nonlinear fractional differential equations has in recent years been an object of in-
creasing interest because of its wide applicability in nonlinear oscillations of earthquakes,
and many physical phenomena such as seepage flow in porous media and in fluid dynamic
traffic models; see [–]. Recently, the existence of solutions for fractional semilinear dif-
ferential or integrodifferential equations has been extensively studied by many authors
[–]. Functional differential equations with infinite delay appear frequently in applica-
tions as model equations and for this reason the study of such equations has received great
attention in the last few years. Many authors [–] were interested in the existence of so-
lutions for fractional functional differential equations with infinite delay in Banach spaces.
Further, the existence, uniqueness and other quantitative and qualitative properties of so-
lutions to various fractional impulsive semilinear differential and integrodifferential sys-
tems have received considerable interest among researchers. With regard to this matter,
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we refer the reader to Mophou [], Shu et al. [], Dabas and Chauhan [], Balachandran
et al. [], and so on.

Controllability is one of the fundamental concepts in mathematical control theory and
plays an important role in control systems. The exact controllability of nonlinear systems
represented by fractional evolution equations or inclusions in abstract spaces has been
considered in many publications; see [–]. There exist only a limited number of papers
on the exact controllability of the fractional impulsive evolution systems. For example,
Tai and Wang [] studied the exact controllability of fractional-order impulsive neutral
functional integrodifferential systems by using fractional calculus, a semigroup of opera-
tors and Krasnoselskii’s fixed point theorem. Debbouche and Baleanu [] established the
exact controllability result of a class of fractional evolution nonlocal impulsive quasilinear
delay integrodifferential systems. Liu and Li [] discussed the exact controllability of im-
pulsive fractional evolution inclusions in Banach spaces. However, in infinite-dimensional
spaces the concept of exact controllability is usually too strong and, indeed, has limited ap-
plicability (see [] and references therein). Approximate controllable systems are more
prevalent and very often approximate controllability is completely adequate in applica-
tions (see [, ] and references therein). Therefore, it is important, in fact necessary, to
study the weaker concept of controllability, namely approximate controllability for non-
linear systems. In recent years, for fractional semilinear control systems in Banach spaces,
several papers were devoted to the approximate controllability. For example, Sakthivel et
al. [, ] discussed the approximate controllability of semilinear fractional differential
systems. The approximate controllability problem for nonlinear fractional stochastic sys-
tem in Hilbert spaces has been investigated []. Kumar and Sukavanam [] proved some
sufficient conditions for the approximate controllability of fractional-order semilinear sys-
tems with bounded delay. Sukavanam and Kumar [] discussed the approximate control-
lability of a fractional-order system in which the nonlinear term depends on both state and
control variables. Yan [] studied the approximate controllability of partial neutral func-
tional differential systems of fractional order with state-dependent delay. Debbouche and
Torres [] derived the approximate controllability of a class of fractional nonlocal delay
semilinear systems. It is well known that many control systems arising from realistic mod-
els can be described as partial fractional differential or integrodifferential inclusions (see
[, , –] and references therein), so it is natural to extend the concept of approxi-
mate controllability to dynamical systems represented by fractional impulsive differential
or integrodifferential inclusions. In this paper, we consider the approximate controllability
of a class of fractional impulsive partial neutral integrodifferential inclusions with infinite
delay in Hilbert spaces of the form

cDαN(xt) ∈ AN(xt) +
∫ t


Q(t – s)N(xs) ds + Bu(s) + F

(
t, xt ,

∫ t


h(t, s, xs) ds

)
,

t ∈ J = [, b], t �= tk , k = , . . . , m, (.)

x = ϕ ∈ B, x′() = , (.)

�x(tk) = Ik(xtk ), k = , . . . , m, (.)

where the unknown x(·) takes values in the Hilbert space H with the norm ‖ · ‖, cDα is
the Caputo fractional derivative of order α ∈ (, ), A, (Q(t))t≥, are closed linear operators



Yan and Jia Advances in Difference Equations  (2015) 2015:130 Page 3 of 31

defined on a common domain which is dense in (H ,‖·‖), the control function u ∈ L(J , U),
a Hilbert space of admissible control functions. Further, B is a bounded linear operator
from U to H and Dα

t ξ (t) represents the Caputo derivative of order α >  defined by

Dα
t ξ (t) =

∫ t


gn–α(t – s)

dn

dsn ξ (s) ds,

where n is the smallest integer greater than or equal to α and gβ (t) := tβ–

�(β) , t > , β ≥ .
The time history xt : (–∞, ] → H given by xt(θ ) = x(t + θ ) belongs to some abstract phase
space B defined axiomatically; and F : J × B × H → P(H) is a bounded, closed, convex-
valued, multivalued map, P(H) is the family of all nonempty subsets of H , G : J × B →
H , N(ψ) = ψ() + G(t,ψ), ψ ∈ B, and Ik : B → H (k = , . . . , m), are functions subject to
some additional conditions. Moreover, let  < t < · · · < tm < b, are prefixed points and the
symbol �x(tk) = x(t+

k ) – x(t–
k ), where x(t–

k ) and x(t+
k ) represent the right and left limits of

x(t) at t = tk , respectively.
To the best of our knowledge, there is no work reported on the approximate controlla-

bility of the fractional impulsive partial neutral integrodifferential inclusions with infinite
delay, which is expressed in the form (.)-(.), and the aim of this paper is to close the
gap. In this paper, motivated by the previously mentioned papers, we will study this inter-
esting problem. Sufficient conditions for the existence are given by means of the nonlinear
alternative of Leray-Schauder type for multivalued maps due to O’Regan [] with the α-
resolvent operator combined with approximation techniques. Especially, the well-known
results that appeared in [–] are generalized to the fractional multivalued settings and
the case of infinite delay. Further, the operators Ik (k = , . . . , m) are continuous but with-
out imposing a completely continuous and Lipschitz condition. Therefore, our results have
more applications in mathematical physical problems.

The rest of this paper is organized as follows. In Section , we introduce some nota-
tions and necessary preliminaries. In Section  we verify the existence of solutions for the
fractional impulsive control system (.)-(.). In Section  we establish the approximate
controllability of fractional impulsive control system (.)-(.). Finally in Section , an
example is given to illustrate our results.

2 Preliminaries
In this section, we introduce some basic definitions, notations and lemmas which are used
throughout this paper.

Let (H ,‖ · ‖) be a Hilbert space. C(J , H) is the Hilbert space of all continuous functions
from J into H with the norm ‖x‖∞ = sup{‖x(t)‖ : t ∈ J} and L(H) denotes the Hilbert space
of bounded linear operators from H to H . A measurable function x : J → H is Bochner
integrable if and only if ‖x‖ is Lebesgue integrable. For properties of the Bochner integral
see Yosida []. L(J , H) denotes the Hilbert space of measurable functions x : J → H which
are Bochner integrable normed by ‖x‖L =

∫ b
 ‖x(t)‖dt for all x ∈ L(J , H). Furthermore,

the notation Br(x, H) stands for the closed ball with center at x and radius r >  in H .
Let P(H) denote the class of all nonempty subsets of H . Let Pbd,cl(H), Pcp,cv(H),

Pbd,cl,cv(H) and Pcd(H) denote respectively the families of all nonempty bounded-closed,
compact-convex, bounded-closed-convex, and compact-acyclic (see []) subsets of H .
For x ∈ H and Y , Z ∈ Pbd,cl(H), we define D(x, Y ) = inf{‖x – y‖ : y ∈ Y } and ρ̃(Y , Z) =
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supa∈Y D(a, Z), and the Hausdorff metric Hd : Pbd,cl(H) × Pbd,cl(H) → R
+ by Hd(Ã, B̃) =

max{ρ̃(Ã, B̃), ρ̃(B̃, Ã)}.
G is called upper semicontinuous (u.s.c.) on H if, for each x ∈ H , the set G(x) is a

nonempty, closed subset of H and if, for each open set S of H containing G(x), there exists
an open neighborhood S of x such that G(S) ⊆ V . F is said to be completely continuous
if G(V ) is relatively compact, for every bounded subset V ⊆ H .

If the multivalued map G is completely continuous with nonempty compact values, then
G is u.s.c. if and only if F has a closed graph, i.e., xn → x∗, yn → y∗, yn ∈ G(xn) imply
y∗ ∈ G(x∗).

A multivalued map G : J → Pbd,cl,cv(H) is said to be measurable if for each x ∈ H , the
function t �→ D(x, G(t)) is a measurable function on J .

Definition . Let G : H → Pbd,cl(H) be a multivalued map. Then G is called a multivalued
contraction if there exists a constant κ ∈ (, ) such that, for each x, y ∈ H , we have

Hd
(
G(x) – G(y)

) ≤ κ‖x – y‖.

The constant κ is called a contraction constant of G.

In this paper, we assume that the phase space (B,‖ · ‖B) is a semi-normed linear space of
functions mapping (–∞, ] into H , and satisfying the following fundamental axioms due
to Hale and Kato (see, e.g., []).

(A) If x : (–∞,σ + b] → H , b > , is such that x|[σ ,σ+b] ∈ C([σ ,σ + b], H) and xσ ∈ B,
then for every t ∈ [σ ,σ + b] the following conditions hold:

(i) xt is in B;
(ii) ‖x(t)‖ ≤ H̃‖xt‖B ;

(iii) ‖xt‖B ≤ K(t – σ ) sup{‖x(s)‖ : σ ≤ s ≤ t} + M(t – σ )‖xσ‖B , where H̃ ≥  is a
constant; K , M : [,∞) → [,∞), K is continuous and M is locally bounded; H̃ ,
K , M are independent of x(·).

(B) For the function x(·) in (A), the function t → xt is continuous from [σ ,σ + b] into B.
(C) The space B is complete.

Remark . ([]) Let ϕ ∈ B and t ≤ . The notation ϕt represents the function defined
by ϕt = ϕ(t + θ ). Consequently, if the function x(·) in axiom (A) is such that x = ϕ, then
xt = ϕt . We observe that ϕt is well defined for t <  since the domain of ϕ is (–∞, ].

Remark . In the rest of this paper Mb and Kb are the constants defined by Mb =
supt∈J M(t) and Kb = supt∈J K(t).

To describe appropriately our problems we say that a function x : [μ, τ ] → H is a nor-
malized piecewise continuous function on [μ, τ ] if x is piecewise continuous and contin-
uous on [μ, τ ]. We denote by PC([μ, τ ], H) the space formed by the normalized piecewise
continuous from [μ, τ ] into H . In particular, we introduce the space PC formed by all
functions x : [, b] → H such that x is continuous at t �= tk , x(tk) = x(t–

k ) and x(t+
k ) exist

for k = , , . . . , m. In this paper, we always assume that PC is endowed with the norm
‖x‖PC = supt∈[,b] ‖x(t)‖. Then (PC,‖ · ‖PC) is a Banach space.



Yan and Jia Advances in Difference Equations  (2015) 2015:130 Page 5 of 31

To simplify the notations, we put t = , tm+ = b and for x ∈ PC, we denote by x̂k ∈
C([tk , tk+]; H), k = , , . . . , m, the function given by

x̂k(t) :=

{
x(t) for t ∈ (tk , tk+],
x(t+

k ) for t = tk .

Moreover, for B ⊆PC we denote by B̂k , k = , , . . . , m, the set B̂k = {x̂k : x ∈ B}.
Let us recall the following definitions and facts.

Definition . ([]) A one-parameter family of bounded linear operators (Rα(t))t≥ on
H is called an α-resolvent operator for

cDαx(t) = Ax(t) +
∫ t


Q(t – s)x(s) ds, (.)

x = ϕ ∈ H , x′() = , (.)

if the following conditions are verified.
(a) The function Rα(·) : [,∞) → L(H) is strongly continuous and Rα()x = x for all

x ∈ H and α ∈ (, ).
(b) For x ∈ D(A), Rα(·)x ∈ C([,∞), [D(A)]) ∩ C((,∞), H), and

Dα
t Rα(t)x = ARα(t)x +

∫ t


Q(t – s)Rα(s)x ds,

Dα
t Rα(t)x = Rα(t)Ax +

∫ t


Rα(t – s)Q(s)x ds

for every t ≥ .

In this work we will consider the following conditions.
(P) The operator A : D(A) ⊆ H → H is a closed linear operator with [D(A)] dense

in H . Let α ∈ (, ). For some φ ∈ (, π ], for each φ < φ there is a positive
constant C = C(φ) such that λ ∈ ρ(A) for each

λ ∈�,αϑ =
{
λ ∈ C,λ �= ,

∣∣arg(λ)
∣∣ < αϑ

}
,

where ϑ = φ + π
 and ‖R(λ, A)‖ ≤ C

|λ| for all λ ∈�,αϑ .
(P) For all t ≥ , Q(t) : D(Q(t)) ⊆ H → H is a closed linear operator, D(A) ⊆ D(Q(t))

and Q(·)x is strongly measurable on (,∞) for each x ∈ D(A). There exists
b(·) ∈ L

loc(R+) such that b̂(λ) exists for Re(λ) >  and ‖Q(t)x‖ ≤ b(t)‖x‖ for all
t >  and x ∈ D(A). Moreover, the operator-valued function
Q̂ :�,π/ → L([D(A)], H) has an analytical extension (still denoted by Q̂) to �,ϑ

such that ‖Q̂(λ)x‖ ≤ ‖Q̂(λ)‖‖x‖ for all x ∈ D(A), and ‖Q̂(λ)‖ = O( 
|λ| ), as |λ| → ∞.

(P) There exists a subspace D ⊆ D(A) dense in [D(A)] and a positive constant C̃ such
that A(D) ⊆ D(A), Q̂(λ)(D) ⊆ D(A), and ‖AQ̂(λ)x‖ ≤ C̃‖x‖ for every x ∈ D and all
λ ∈�,ϑ .
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In the sequel, for r >  and θ ∈ (π ,ϑ),

�r,θ =
{
λ ∈ C, |λ| > r,

∣∣arg(λ)
∣∣ < θ

}
,

for �r,θ , �i
r,θ , i = , , , are the paths

�
r,θ =

{
teiθ : t ≥ r

}
,

�
r,θ =

{
teiξ : |ξ | ≤ θ

}
,

�
r,θ =

{
te–iθ : t ≥ r

}
,

and �r,θ =
⋃

i=�
i
r,θ oriented counterclockwise. In addition, ρα(Gα) are the sets

ρα(Gα) =
{
λ ∈C : Gα(λ) := λα–(λαI – A – Q̂(λ)

)– ∈ L(H)
}

.

We now define the operator family (Rα(t))t≥ by

Rα(t) :=

{


π i
∫
�r,θ

eλtGα(λ) dλ, t > ,
I, t = .

Lemma . ([]) Assume that conditions (P)-(P) are fulfilled. Then there exists a unique
α-resolvent operator for problem (.)-(.).

Lemma . ([]) The function Rα : [,∞) → L(H) is strongly continuous and Rα :
(,∞) → L(H) is uniformly continuous.

Definition . ([]) Let α ∈ (, ), we define the family (Sα(t))t≥ by

Sα(t)x :=
∫ t


gα–(t – s)Rα(s) ds

for each t ≥ .

Lemma . ([]) If the function Rα(·) is exponentially bounded in L(H), then Sα(·) is
exponentially bounded in L(H).

Lemma . ([]) If the function Rα(·) is exponentially bounded in L([D(A)]), then Sα(·)
is exponentially bounded in L([D(A)]).

Lemma . ([]) If R(λα, A) is compact for some λα ∈ ρ(A), then Rα(t) and Sα(t) are
compact for all t > .

Let xb(x; u) be the state value of system (.)-(.) at terminal time b corresponding to
the control u and the initial value x = ϕ ∈ B. Introduce the set

B(b, x) =
{

xb(x; u)() : u(·) ∈ L(J , U)
}

,

which is called the reachable set of system (.)-(.) at terminal time b, its closure in H is
denoted by B(b, x).
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Definition . A function x : (–∞, b] → H is called a mild solution of problem (.)-(.)
if x = ϕ ∈ B for every s ∈ J and �x(tk) = Ik(xtk ), k = , . . . , m, the restriction of x(·) to the
interval (tk , tk+] (k = , , . . . , m) is continuous, and

x(t) ∈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rα(t)[ϕ() – G(,ϕ)] + G(t, xt) +
∫ t

 Sα(t – s)Bu(s) ds
+

∫ t
 Sα(t – s)F(s, xs,

∫ s
 h(s, τ , xτ ) dτ ) ds, t ∈ [, t],

Rα(t – t)[x(t–
 ) + I(xt ) – G(t, xt+


)]

+ G(t, xt) +
∫ t

t
Sα(t – s)Bu(s) ds

+
∫ t

t
Sα(t – s)F(s, xs,

∫ s
 h(s, τ , xτ ) dτ ) ds, t ∈ (t, t],

...
Rα(t – tm)[x(t–

m) + Im(xtm ) – G(tm, xt+
m )]

+ G(t, xt) +
∫ t

tm
Sα(t – s)Bu(s) ds

+
∫ t

tm
Sα(t – s)F(s, xs,

∫ s
 h(s, τ , xτ ) dτ ) ds, t ∈ (tm, b].

Definition . System (.)-(.) is said to be approximately controllable on the interval
[, b] if B(b, x) = H that is, if it is possible to steer the system from the initial point x to
within a distance ε >  from all the final points in the state space H at time b.

It is convenient at this point to define operators

�b
τ =

∫ b

τ

Sα(b – s)BB∗S∗
α(b – s) ds,  ≤ τ < b,

�
tk
tk– =

∫ tk

tk–

Sα(tk – s)BB∗S∗
α(tk – s) ds, k = , , . . . , m, m + ,

R
(
a,�tk

tk–

)
=

(
aI + �tk

tk–

)– for a > , k = , , . . . , m, m + ,

where B∗ denotes the adjoint of B and S∗
α(t) is the adjoint of Sα(t). It is straightforward

that the operator �tk
tk– is a linear bounded operator.

Lemma . The linear integrodifferential Cauchy problem corresponding to system (.)-
(.) is approximately controllable on J if and only if aR(a,�s

τ ) → ,  ≤ τ < s ≤ b, as a →
+ in the strong operator topology.

The proof of this lemma is a straightforward adaptation of the proof of [], Theorem .

Lemma . A set B ⊆ PC is relatively compact in PC if and only if the set B̂k is relatively
compact in C([tk , tk+]; H) for every k = , , . . . , m.

Lemma . ([] Nonlinear alternative of Leray-Schauder type for multivalued maps due
to O’Regan) Let H be a Hilbert space with V an open, convex subset of H and y ∈ H .
Suppose

(a) � : V →Pcd(H) has a closed graph, and
(b) � : V →Pcd(H) is a condensing map with �(V ) a subset of a bounded set in H hold.

Then either
(i) � has a fixed point in V ; or

(ii) there exist y ∈ ∂V and λ ∈ (, ) with y ∈ λ�(y) + ( – λ){y}.
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3 Existence of solutions for fractional impulsive control systems
In this section, we prove the existence of solutions for the fractional impulsive control
system (.)-(.). We make the following hypotheses.

(H) The operator families Rα(t) and Sα(t) are compact for all t > , and there exist
constants M and δ such that ‖Rα(t)‖L(H) ≤ Meδt and ‖Sα(t)‖L(H) ≤ Meδt for every
t ∈ J .

(H) The function G : J ×B → H is continuous and there exists a L >  such that

∥∥G(t,ψ) – G(t,ψ)
∥∥ ≤ L

[|t – t| + ‖ψ –ψ‖B
]
, t, t ∈ J ,ψ,ψ ∈ B,

and

∥∥G(t,ψ)
∥∥ ≤ L

(‖ψ‖B + 
)
, t ∈ J ,ψ ∈ B.

(H) (i) For each (t, s) ∈� the function h(t, s, ·) : B → H is continuous and for each
x ∈ B, the function h(·, ·, x) :�→ H is strongly measurable.

(ii) There exists a continuous function p :�→ [,∞), such that

∥∥h(t, s,ψ)
∥∥ ≤ p(t, s)�

(‖ψ‖B
)

for a.e. t, s ∈ J , ψ ∈ B, where � : [,∞) → (,∞) is a continuous
nondecreasing function.

(H) The multivalued map F : J ×B × H →Pbd,cl,cv(H); for each t ∈ J , the function
F(t, ·, ·) : B × H →Pbd,cl,cv(H) is u.s.c. and for each (ψ , y) ∈ B × H , the function
F(·,ψ , y) is measurable; for each fixed (ψ , y) ∈ B × H , the set

SF ,ψ =
{

f ∈ L(J , H) : f (t) ∈ F
(

t,ψ ,
∫ t


h(t, s,ψ) ds

)
for a.e. t ∈ J

}

is nonempty.
(H) There exist a continuous function m : J → [,∞) and a continuous nondecreasing

function � : [,∞) → (,∞) such that

∥∥F(t,ψ , y)
∥∥ = sup

{‖f ‖ : f ∈ F(t,ψ , y)
} ≤ m(t)�

(‖ψ‖B + ‖y‖),

for a.e. t ∈ J and each ψ ∈ B, y ∈ H with

∫ ∞




s +�(s) +�(s)

ds = ∞. (.)

(H) The functions Ik : B → H are continuous and there exist constants ck such that

lim sup
‖ψ‖B→∞

‖Ik(ψ)‖
‖ψ‖B = ck

for every ψ ∈ B, k = , . . . , m.
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Lemma . ([]) Let J be a compact interval and H be a Hilbert space. Let F be a mul-
tivalued map satisfying (H) and let P be a linear continuous operator from L(J , H) to
C(J , H). Then the operator

P ◦ SF : C(J , H) →Pcp,cv(H), x → (P ◦ SF )(x) := P(SF , x)

is a closed graph in C(J , H) × C(J , H).

Theorem . If assumptions (H)-(H) are satisfied. Further, suppose that, for all a > ,
then system (.)-(.) has at least one mild solution on J , provided that

max
≤k≤m

{
M

[
 + Kb(Mck + ML)

]
+ MKbML

}
< , (.)

where M = MN∗( + 
a M∗N∗ M

 b), M = ( + 
a MM∗N∗M

 b)N∗, M∗ = M max{, eδb}, N∗ =
max{, e–δb}, M = ‖B‖.

Proof Consider the space Y = {x : (–∞, b] → H ; x = , x|J ∈ PC(J , H)} endowed with the
uniform convergence topology and define the multivalued map � : Y →P(Y) by �x, the
set of ρ ∈ Y such that

ρ(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, t ∈ (–∞, ],
Rα(t)[ϕ() – G(,ϕ)] + G(t, x̄t)

+
∫ t

 Sα(t – s)Bua
x̄(s) ds +

∫ t
 Sα(t – s)f (s) ds, t ∈ [, t],

Rα(t – t)[x̄(t–
 ) + I(x̄t ) – G(t, x̄t+


)] + G(t, x̄t)

+
∫ t

 Sα(t – s)Bua
x̄(s) ds +

∫ t
t
Sα(t – s)f (s) ds, t ∈ (t, t],

...
Rα(t – tm)[x̄(t–

m) + Im(x̄tm ) – G(tm, x̄t+
m )] + G(t, x̄t)

+
∫ t

 Sα(t – s)Bua
x̄(s) ds +

∫ t
tm
Sα(t – s)f (s) ds, t ∈ (tm, b],

where

ua
x̄(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B∗S∗
α(t – s)R(a,�t

 )[x + xb–x
m+ – Rα(t)[ϕ() – G(,ϕ)]

– G(t, x̄t ) –
∫ t

 Sα(t – η)f (η) dη], s ∈ [, t],
B∗S∗

α(t – s)R(a,�t
t )[x + (xb–x)

m+ – Rα(t – t)[x̄(t–
 ) + I(x̄t )

– G(t, x̄t+


)] – G(t, x̄t ) –
∫ t

t
Sα(t – η)f (η) dη], s ∈ (t, t],

...
B∗S∗

α(b – s)R(a,�b
tm )[xb – Rα(b – tm)[x̄(t–

m) + Im(x̄tm )
– G(tm, x̄t+

m )] – G(b, x̄b) –
∫ b

tm
Sα(b – η)f (η) dη], s ∈ (tm, b],

and f ∈ SF ,x̄ = {f ∈ L(J , H) : f (t) ∈ F(t, x̄t ,
∫ t

 h(t, s, x̄s) ds) a.e. t ∈ J}, and x̄ : (–∞, ] → H is
such that x̄ = ϕ and x̄ = x on J . In what follows, we aim to show that the operator � has a
fixed point, which is a solution of problem (.)-(.).
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Let {σn : n ∈ N} be a decreasing sequence in (, t) ⊂ (, b) such that limn→∞ σn = . To
prove the above theorem, we consider the following problem:

cDαÑ(xt) ∈ AÑ(xt) +
∫ t


Q(t – s)Ñ(xs) ds + Bu(s) + F

(
t, xt ,

∫ t


h(t, s, xs) ds

)
,

t ∈ J = [, b], t �= tk , k = , . . . , m, (.)

x = ϕ ∈ B, x′() = , (.)

�x(tk) = Rα(σn)Ik(xtk ), k = , . . . , m, (.)

where Ñ(xt) = ϕ() +Rα(σn)G(t, xt). We shall show that the problem has at least one mild
solution xn ∈ Y .

For fixed n ∈ N, set the multivalued map �n : Y → P(Y) by �nx the set of ρn ∈ Y such
that

ρn(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, t ∈ (–∞, ],
Rα(t)[ϕ() – Rα(σn)G(,ϕ)] + Rα(σn)G(t, x̄t)

+
∫ t

 Sα(t – s)Bua
x̄(s) ds +

∫ t
 Sα(t – s)f (s) ds, t ∈ [, t],

Rα(t – t)[x̄(t–
 ) + Rα(σn)I(x̄t ) – Rα(σn)G(t, x̄t+


)]

+ Rα(σn)G(t, x̄t) +
∫ t

t
Sα(t – s)Bua

x̄(s) ds
+

∫ t
t
Sα(t – s)f (s) ds, t ∈ (t, t],

...
Rα(t – tm)[x̄(t–

m) + Rα(σn)Im(x̄tm ) – Rα(σn)G(tm, x̄t+
m )]

+ Rα(σn)G(t, x̄t) +
∫ t

tm
Sα(t – s)Bua

x̄(s) ds
+

∫ t
tm
Sα(t – s)f (s) ds, t ∈ (tm, b],

where

ua
x̄(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B∗S∗
α(t – s)R(a,�t

 )[x + xb–x
m+ – Rα(t)[ϕ()

– Rα(σn)G(,ϕ)] – Rα(σn)G(t, x̄t )
–

∫ t
 Sα(t – η)f (η) dη], s ∈ [, t],

B∗S∗
α(t – s)R(a,�t

t )[x + (x–x)
m+ – Rα(t – t)[x̄(t–

 )
+ Rα(σn)I(x̄t ) – Rα(σn)G(t, x̄t+


)]

– Rα(σn)G(t, x̄t ) –
∫ t

t
Sα(t – s)f (η) dη], s ∈ (t, t],

...
B∗S∗

α(b – s)R(a,�b
tm )[xb – Rα(b – tm)[x̄(t–

m)
+ Rα(σn)Im(x̄tm ) – Rα(σn)G(tm, x̄t+

m )]
– Rα(σn)G(b, x̄b) –

∫ b
tm
Sα(b – s)f (η) dη], t ∈ (tm, b],

and f ∈ SF ,x̄. It is easy to see that the fixed point of �n is a mild solution of problem (.)-
(.).

Step . We shall show there exists an open set V ⊆ Y with x ∈ λ�nx for λ ∈ (, ) and
x /∈ ∂V .
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Let λ ∈ (, ) and let x ∈ λ�nx, then there exists an f ∈ SF ,x̄ such that we have

x(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λRα(t)[ϕ() – Rα(σn)G(,ϕ)] + λRα(σn)G(t, x̄t)
+ λ

∫ t
 Sα(t – s)Bua

x̄(s) ds + λ
∫ t

 Sα(t – s)f (s) ds, t ∈ [, t],
λRα(t – t)[x̄(t–

 ) + Rα(σn)I(x̄t ) – Rα(σn)G(t, x̄t+


)]
+ λRα(σn)G(t, x̄t) + λ

∫ t
t
Sα(t – s)Bua

ū(s) ds
+ λ

∫ t
t
Sα(t – s)f (s) ds, t ∈ (t, t],

...
λRα(t – tm)[x̄(t–

m) + Rα(σn)Im(x̄tm ) – Rα(σn)G(tm, x̄t+
m )]

+ λRα(σn)G(t, x̄t) + λ
∫ t

tm
Sα(t – s)Bua

x̄(s) ds
+ λ

∫ t
tm
Sα(t – s)f (s) ds, t ∈ (tm, b],

for some λ ∈ (, ). On the other hand, from condition (H), we conclude that there exist
positive constants εk (k = , . . . , m), γ such that, for all ‖ψ‖B > γ,

∥∥Ik(ψ)
∥∥ ≤ (ck + εk)‖ψ‖B ,

max
≤k≤m

{
M

[
 + Kb

(
M(ck + εk) + ML

)]
+ MKbML

}
< . (.)

Let

F =
{
ψ : ‖ψ‖B ≤ γ

}
, F =

{
ψ : ‖ψ‖B > γ

}
, C = max

{∥∥Ik(ψ)
∥∥, x ∈ F

}
.

Therefore

∥∥Ik(ψ)
∥∥ ≤ C + (ck + εk)‖ψ‖B . (.)

Then, by (H)-(H) and (.), from the above equation, we have for t ∈ [, t]

∥∥x(t)
∥∥ ≤ Meδt[H̃‖ϕ‖B + Meδσn L

(‖ϕ‖B + 
)]

+ Meδσn L
(‖x̄t‖B + 

)

+ Meδt 
a

MeδbN
∗ tM

 Meδσn L
(‖x̄t‖B + 

)
+ Meδt 

a
MeδbN

∗ tM
 Ñ

+ Meδt
∫ t


e–δsm(s)�

(
‖x̄s‖B +

∫ s


p(s, τ )�

(‖x̄τ‖B
)

dτ
)

ds,

where

Ñ = ‖x‖ +
∥∥∥∥x – x

m + 

∥∥∥∥ + M∗
[∥∥ϕ()

∥∥ + Meδσn L
(‖ϕ‖B + 

)]

+ M∗
∫ t


e–δηmf (η)�

(
‖x̄η‖B +

∫ η


p(η,ϑ)�

(‖x̄ϑ‖B
)

dϑ
)

dη, M = ‖B‖.

Similarly, for any t ∈ (tk , tk+], k = , . . . , m, we have

∥∥x(t)
∥∥ ≤ Meδ(t–tk ){∥∥x̄

(
t–
k
)∥∥ + Meδσn

[
C + (ck + εk)‖x̄tk ‖B

]
+ Meδσn L

(‖x̄t+
k
‖B + 

)}

+ Meδσn L
(‖x̄t‖B + 

)
+ Meδt 

a
MeδbN

∗ M
 (tk+ – tk)

{
M∗N∗

[∥∥x̄
(
t–
k
)∥∥
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+ Meδσn
[
C + (ck + εk)‖x̄tk ‖B

]
+ Meδσn L

(‖x̄t+
k
‖B + 

)]

+ Meδσn L
(‖x̄tk+‖B + 

)}
+ Meδt 

a
MeδbN

∗ M
 (tk+ – tk)Ñk

+ Meδt
∫ t

tk

e–δsm(s)�
(

‖x̄t‖B +
∫ s


p(s, τ )�

(‖x̄τ‖B
)

dτ
)

ds,

where

Ñk = ‖x‖ +
∥∥∥∥ (k + )(x – x)

m + 

∥∥∥∥

+ M∗
∫ tk+

tk

e–δηmf (η)�
(

‖x̄η‖B +
∫ η


p(η,ϑ)�

(‖x̄ϑ‖B
)

dϑ
)

dη.

Then, for all t ∈ [, b], we have

∥∥x(t)
∥∥ ≤ M̃eδt + MeδtN∗

(
 +


a

M
∗N

∗ M
 b

)[∥∥x̄
(
t–
k
)∥∥ + Meδσn (ck + εk)‖x̄tk ‖B

+ Meδσn L‖x̄t+
k
‖B

]
+ Meδt 

a
M∗N

∗ M
 bMeδσn L‖x̄tk+‖B + Meδσn L‖x̄t‖B

+ Meδt
∫ t


e–δsm(s)�

(
‖x̄s‖B +

∫ s


p(s, τ )�

(‖x̄τ‖B
)

dτ
)

ds,

where

M̃ = max

{
M

[
H̃‖ϕ‖B + Meδσn L

(‖ϕ‖B + 
)]

+ Meδσn L

+ M

a

M∗N
∗ tM

 Meδσn L + M

a

M∗N
∗ tÑ,

MN∗
(

 +

a

M
∗N

∗ M
 b

)[
Meδσn C + Meδσn L

]
+ Meδσn L

+ M

a

M∗N
∗ M

 bMeδσn L + M

a

M∗N
∗ M

 bÑ
}

, Ñ = max
≤k≤m

{Ñk}.

Since limn→∞ σn = , it follows that

∥∥x(t)
∥∥ ≤ M̃eδt + MeδtN∗

(
 +


a

M
∗N

∗ M
 b

)[∥∥x̄
(
t–
k
)∥∥ + M(ck + εk)‖x̄tk ‖B

+ ML‖x̄t+
k
‖B

]
+ Meδt 

a
M∗N

∗ M
 bML‖x̄tk+‖B + ML‖x̄t‖B

+ Meδt
∫ t


e–δsm(s)�

(
‖x̄s‖B +

∫ s


p(s, τ )�

(‖x̄τ‖B
)

dτ
)

ds.

It is easy to see that

‖x̄t‖B ≤ Mb‖ϕ‖B + Kb‖x‖t , t ∈ [, b],

where ‖x‖t = sup≤s≤t ‖x(s)‖. If v(t) = Mb‖ϕ‖B + Kb‖x‖t , t ∈ [, b], we obtain
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v(t) ≤ Mb‖ϕ‖B + M̃eδt + MeδtN∗
(

 +

a

M
∗N

∗ M
 b

)
v(t)

+ KbMeδtN∗
(

 +

a

M
∗N

∗ M
 b

)[
M(ck + εk)v(t) + MLv(t)

]

+ KbMeδt 
a

M∗N
∗ M

 bMLv(t) + KbMLv(t)

+ KbMeδt
∫ t


e–δsm(s)�

(
v(s) +

∫ s


p(s, τ )�

(
v(τ )

)
dτ

)
ds.

Since L̃ = max≤k≤m{M[ + Kb(M(ck + εk) + ML)] + MKbML} < , we obtain

e–δtv(t) ≤ 
 – L̃

[
N∗Mb‖ϕ‖B + M̃

+ KbM
∫ t


e–δsm(s)�

(
v(s) +

∫ s


p(s, τ )�

(
v(τ )

)
dτ

)
ds

]
.

Denoting by w(t) the right-hand side of the above inequality, we have

v(t) ≤ eδtw(t) for all t ∈ J ,

and

w() =


 – L̃
[
N∗Mb‖ϕ‖B + M̃

]
,

w′(t) =


 – L̃
KbMe–δtm(t)�

(
v(t) +

∫ t


p(t, s)�

(
v(s)

)
ds

)

≤ 
 – L̃

KbMe–δtm(t)�
(

eδtw(t) +
∫ t


p(t, s)�

(
eδsw(s)

)
ds

)
, t ∈ J .

Let ξ (t) = eδtw(t) +
∫ t

 p(t, s)�(eδsw(s)) ds, then ξ () = w(), eδtw(t) ≤ ξ (t), and for each
t ∈ J we have

(
ξ (t)

)′ = δeδtw(t) + w′(t)eδt + p(t, t)�
(
eδtw(t)

)

≤ δξ (t) +


 – L̃
KbMm(t)�

(
ξ (t)

)
+ p(t, t)�

(
ξ (t)

)

≤ max

{
δ,


 – L̃

KbMm(t), p(t, t)
}[
ξ (t) +�

(
ξ (t)

)
+�

(
ξ (t)

)]
, t ∈ J .

This implies that
∫ ξ (t)

ξ ()

dς
ς +�(ς ) +�(ς )

≤
∫ b


max

{
δ,


 – L̃

KbMm(t), p(t, t)
}

dt < ∞.

This inequality shows that there is a constant K̃ such that ξ (t) ≤ K̃ , t ∈ J , and hence
‖x‖PC ≤ v(t) ≤ ξ (t) ≤ K̃ , where K̃ depends only on M, δ, b and on the functions m(·),
p(·, ·), �(·) and �(·). Then there exists r∗ such that ‖x‖PC �= r∗. Set

V =
{

x ∈ Y : ‖x‖PC < r∗}.

From the choice of V , there is no x ∈ ∂V such that x ∈ λ�nx for λ ∈ (, ).
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Step . �n has a closed graph.
Let x(j) → x∗, ρ(j)

n ∈�nx(j), x(j) ∈ V and ρ(j)
n → ρ∗

n . From axiom (A), it is easy to see that
(x(j))s → x∗s uniformly for s ∈ (–∞, b] as n → ∞. We prove that ρ∗

n ∈ �nx∗. Now ρ
(j)
n ∈

�nx(j) means that there exists f (j) ∈ SF ,x(j) such that, for each t ∈ [, t],

ρ(j)
n (t) = Rα(t)

[
ϕ() – Rα(σn)G(,ϕ)

]
+ Rα(σn)G

(
t,

(
x(j)

)
t

)

+
∫ t


Sα(t – s)BB∗S∗

α(t – s)R
(
a,�t


)[

x +
xb – x

m + 
– Rα(t)

[
ϕ()

– Rα(σn)G(,ϕ)
]

– Rα(σn)G
(
t,

(
x(j)

)
t

)

–
∫ t


Sα(t – η)f (j)(η) dη

]
ds +

∫ t


Sα(t – s)f (j)(s) ds, t ∈ [, t].

We must prove that there exists f ∗ ∈ SF ,x∗ such that, for each t ∈ [, t],

ρ∗
n(t) = Rα(t)

[
ϕ() – Rα(σn)G(,ϕ)

]
+ Rα(σn)G

(
t,

(
x∗)

t

)

+
∫ t


Sα(t – s)BB∗S∗

α(t – s)R
(
a,�t


)[

x +
xb – x

m + 

– Rα(t)
[
ϕ() – Rα(σn)G(,ϕ)

]
– Rα(σn)G

(
t,

(
x∗)

t

)

–
∫ t


Sα(t – η)f (j)(η) dη

]
ds +

∫ t


Sα(t – s)f ∗(s) ds.

Now, for every t ∈ [, t], we have

∥∥∥∥
(
ρ(j)

n (t) – Rα(t)
[
ϕ() – Rα(σn)G(,ϕ)

]
– Rα(σn)G

(
t,

(
x(j)

)
t

)

–
∫ t


Sα(t – s)BB∗S∗

α(t – s)R
(
a,�t


)[

x +
xb – x

m + 
– Rα(t)

[
ϕ()

– Rα(σn)G(,ϕ)
]

– Rα(σn)G
(
t,

(
x(j)

)
t

)]
ds

)

–
(
ρ∗

n(t) – Rα(t)
[
ϕ() – Rα(σn)G(,ϕ)

]
– Rα(σn)G

(
t,

(
x∗)

t

)

–
∫ t


Sα(t – s)BB∗S∗

α(t – s)R
(
a,�t


)[

x +
xb – x

m + 
– Rα(t)

[
ϕ()

– Rα(σn)G(,ϕ)
]

– Rα(σn)G
(
t,

(
x∗)

t

)]
ds

)∥∥∥∥
PC

→  as j → ∞.

Consider the linear continuous operator � : L([, t], H) → C([, t], H),

�(f )(t) =
∫ t


Sα(t – s)BB∗S∗

α(t – s)R
(
a,�t


)[∫ t


Sα(t – η)f (η) dη

]
ds

+
∫ t


Sα(t – s)f (s) ds.

From Lemma ., it follows that� ◦SF is a closed graph operator. Also, from the definition
of � , we have, for every t ∈ [, t],
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ρ(j)
n (t) – Rα(t)

[
ϕ() – Rα(σn)G(,ϕ)

]
+ Rα(σn)G

(
t,

(
x(j)

)
t

)

–
∫ t


Sα(t – s)BB∗S∗

α(t – s)R
(
a,�t


)[

x +
xb – x

m + 

– Rα(t)
[
ϕ() – Rα(σn)G(,ϕ)

]
– Rα(σn)G

(
t,

(
x(j)

)
t

)]
ds ∈�(SF ,x(j) ).

Since x(j) → x∗, for some f ∗ ∈ SF ,x∗ it follows that, for every t ∈ [, t], we have

ρ∗
n(t) – Rα(t)

[
ϕ() – Rα(σn)G(,ϕ)

]
+ Rα(σn)G

(
t,

(
x∗)

t

)

–
∫ t


Sα(t – s)BB∗S∗

α(t – s)R
(
a,�t


)[

x +
x – x

m + 

– Rα(t)
[
ϕ() – Rα(σn)G(,ϕ)

]
– Rα(σn)G

(
t,

(
x∗)

t

)]
ds

=
∫ t


Sα(t – s)BB∗S∗

α(t – s)R
(
a,�t


)[∫ t


Sα(t – η)f ∗(η) dη

]
ds

+
∫ t


Sα(t – s)f ∗(s) ds.

Similarly, for any t ∈ (tk , tk+], k = , . . . , m, we have

ρ(j)
n (t) = Rα(t – tk)

[
x(j)

(
t–
k
)

+ Rα(σn)Ik
((

x(j)
)

tk

)
– Rα(σn)G

(
tk ,

(
x(j)

)
t+
k

)]

– Rα(σn)G
(
t,

(
x(j)

)
t

)

+
∫ t

tk

Sα(t – s)BB∗S∗
α(tk+ – s)R

(
a,�tk+

tk

)[
x +

(k + )(xb – x)
m + 

– Rα(tk+ – tk)
[
x(j)

(
t–
k
)

+ Rα(σn)Ik
((

x(j)
)

tk

)
– Rα(σn)G

(
tk ,

(
x(j)

)
t+
k

)]

– Rα(σn)G
(
tk+,

(
x(j)

)
tk+

)
–

∫ tk+

tk

Sα(tk+ – η)f (j)(η) dη
]

ds

+
∫ t

tk

Sα(t – s)f (j)(s) ds, t ∈ (tk , tk+].

We must prove that there exists f ∗ ∈ SF ,x∗ such that, for each t ∈ (tk , tk+],

ρ∗
n(t) = Rα(t – tk)

[
x∗(t–

k
)

+ Rα(σn)Ik
((

x∗)
tk

)
– Rα(σn)G

(
tk ,

(
x∗)

t+
k

)]

– Rα(σn)G
(
t,

(
x∗)

t

)

+
∫ t

tk

Sα(t – s)BB∗S∗
α(tk+ – s)R

(
a,�tk+

tk

)[
x +

(k + )(xb – x)
m + 

– Rα(tk+ – tk)
[
x∗(t–

k
)

+ Rα(σn)Ik
((

x∗)
tk

)]
– Rα(σn)G

(
tk ,

(
x∗)

t+
k

)

– Rα(σn)G
(
tk+,

(
x∗)

tk+

)
–

∫ tk+

tk

Sα(tk+ – η)f ∗(η) dη
]

ds

+
∫ t

tk

Sα(t – s)f ∗(s) ds, t ∈ (tk , tk+].
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Now, for every t ∈ (tk , tk+], k = , . . . , m, we have

∥∥∥∥
(
ρ(j)

n (t) – Rα(t – tk)
[
x(j)

(
t–
k
)

+ Rα(σn)Ik
((

x(j)
)

tk

)
– Rα(σn)G

(
tk ,

(
x(j)

)
t+
k

)]

– Rα(σn)G
(
t,

(
x(j)

)
t

)

–
∫ t

tk

Sα(t – s)BB∗S∗
α(tk+ – s)R

(
a,�tk+

tk

)[
x +

(k + )(x – x)
m + 

– Rα(tk+ – tk)
[
x(j)

(
t–
k
)

+ Rα(σn)Ik
((

x(j)
)

tk

)
– Rα(σn)G

(
tk ,

(
x(j)

)
t+
k

)]

– Rα(σn)G
(
tk+,

(
x(j)

)
tk+

)]
ds

)
–

(
ρ∗

n(t) – Rα(t – tk)
[
x∗(t–

k
)

+ Ik
((

x∗)
tk

)

– Rα(σn)G
(
tk ,

(
x∗)

t+
k

)]
– Rα(σn)G

(
t,

(
x∗)

t

)

–
∫ t

tk

Sα(t – s)BB∗S∗
α(tk+ – s)R

(
a,�tk+

tk

)[
x +

(k + )(x – x)
m + 

– Rα(tk+ – tk)
[
x∗(t–

k
)

+ Rα(σn)Ik
((

x∗)
tk

)
– Rα(σn)G

(
tk ,

(
x∗)

t+
k

)]

– Rα(σn)G
(
tk+,

(
x∗)

tk+

)]
ds

)∥∥∥∥
PC

→  as j → ∞.

Consider the linear continuous operator � : L((tk , tk+], H) → C((tk , tk+], H), k = , . . . , m,

�(f )(t) =
∫ t

tk

Sα(t – s)BB∗S∗
α(tk+ – s)R

(
a,�tk+

tk

)[∫ tk+

tk

Sα(t – η)f (η) dη
]

ds

+
∫ t

tk

Sα(t – s)f (s) ds.

From Lemma ., it follows that� ◦SF is a closed graph operator. Also, from the definition
of � , we have, for every t ∈ (tk , tk+], k = , . . . , m,

ρ(j)
n (t) – Rα(t – tk)

[
x(j)

(
t–
k
)

+ Rα(σn)Ik
((

x(j)
)

tk

)
– Rα(σn)G

(
tk ,

(
x(j)

)
t+
k

)]

– Rα(σn)G
(
t,

(
x(j)

)
t

)

–
∫ t

tk

Sα(t – s)BB∗S∗
α(tk+ – s)R

(
a,�tk+

tk

)[
x +

(k + )(xb – x)
m + 

– Rα(tk+ – tk)
[
x(j)

(
t–
k
)

+ Rα(σn)Ik
((

x(j)
)

tk

)
– Rα(σn)G

(
tk ,

(
x(j)

)
t+
k

)]

– Rα(σn)G
(
tk+,

(
x(j)

)
tk+

)]
ds ∈�(SF ,x(j) ).

Since x(j) → x∗, for some f ∗ ∈ SF ,x∗ it follows that, for every t ∈ (tk , tk+], we have

ρ∗
n(t) – Rα(t – tk)

[
x∗(t–

k
)

+ Rα(σn)Ik
((

x∗)
tk

)
– Rα(σn)G

(
tk ,

(
x∗)

t+
k

)]

– Rα(σn)G
(
t,

(
x∗)

t

)

–
∫ t

tk

Sα(t – s)BB∗S∗
α(tk+ – s)R

(
a,�tk+

tk

)[
x +

(k + )(xb – x)
m + 
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– Rα(tk+ – tk)
[
x∗(t–

k
)

+ Rα(σn)Ik
((

x∗)
tk

)
– Rα(σn)G

(
tk ,

(
x∗)

t+
k

)]

– Rα(σn)G
(
tk+,

(
x∗)

tk+

)]
ds

=
∫ t

tk

Sα(t – s)BB∗S∗
α(tk+ – s)R

(
a,�tk+

tk

)[∫ tk+

tk

Sα(tk+ – η)f ∗(η) dη
]

ds

+
∫ t

tk

Sα(t – s)f ∗(s) ds.

Therefore, �n has a closed graph.
Step . We show that the operator �n is condensing.
For this purpose, we decompose �n as �n + �n, where the map �n : V → Y is defined

by �nx, the set �n ∈ Y is such that

�n(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

, t ∈ (–∞, ],
–Rα(t)Rα(σn)G(,ϕ) + Rα(σn)G(t, x̄t), t ∈ [, t],
–Rα(t – t)Rα(σn)G(t, x̄t+


) + Rα(σn)G(t, x̄t), t ∈ (t, t],

...
–Rα(t – tm)Rα(σn)G(tm, x̄t+

m ) + Rα(σn)G(t, x̄t), t ∈ (tm, b],

and the map �n : V → Y is defined by �nx, the set ϑn ∈ Y is such that

ϑn(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, t ∈ (–∞, ],
Rα(t)ϕ() +

∫ t
 Sα(t – s)Bua

x̄(s) ds +
∫ t

 Sα(t – s)f (s) ds, t ∈ [, t],
Rα(t – t)[x̄(t–

 ) + Rα(σn)I(x̄t )]
+

∫ t
t
Sα(t – s)Bua

x̄(s) ds +
∫ t

t
Sα(t – s)f (s) ds, t ∈ (t, t],

...
Rα(t – tm)[x̄(t–

m) + Rα(σn)Im(x̄tm )]
+

∫ t
tm
Sα(t – s)Bua

x̄(s) ds +
∫ t

tm
Sα(t – s)f (s) ds, t ∈ (tm, b].

We first show that �n is a contraction while �n is a completely continuous operator.
Claim . �n is a contraction on V .
Let t ∈ [, t] and x∗, x∗∗ ∈ Y . From (H), we have

∥∥(
�nx∗)(t) –

(
�nx∗∗)(t)

∥∥
≤ ∥∥Rα(σn)

[
G

(
t, x∗t

)
– G

(
t, x∗∗t

)]∥∥
≤ LMeδσn

∥∥x∗t – x∗∗t
∥∥
B

≤ LMeδσn Kb sup
s∈[,b]

∥∥x∗(s) – x∗∗(s)
∥∥

= LMeδσn Kb sup
s∈[,b]

∥∥x∗(s) – x∗∗(s)
∥∥ (since x̄ = x on J)

= LMeδσn Kb
∥∥x∗ – x∗∗∥∥

PC .
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Similarly, for any t ∈ (tk , tk+], k = , . . . , m, we have

∥∥(
�nx∗)(t) –

(
�nx∗∗)(t)

∥∥
≤ ∥∥Rα(t – tk)Rα(σn)

[
–G

(
tk , x∗t+

k

)
+ G

(
tk , x∗∗t+

k

)]∥∥
+

∥∥Rα(σn)
[
G

(
t, x∗t

)
– G

(
t, x∗∗t

)]∥∥
≤ Meδ(t–tk )LMeδσn

∥∥x∗t+
k

– x∗∗t+
k

∥∥
B + LMeδσn

∥∥x∗t – x∗∗t
∥∥
B

≤ (M∗N∗ + )LMeδσn Kb sup
s∈[,b]

∥∥x∗(s) – x∗∗(s)
∥∥

= (M∗N∗ + )LMeδσn Kb sup
s∈[,b]

∥∥x∗(s) – x∗∗(s)
∥∥ (since x̄ = x on J)

= (M∗N∗ + )LMeδσn Kb
∥∥x∗ – x∗∗∥∥

PC ,

where M∗ = M max{, eδb}, N∗ = max{, e–δb}. Thus, for all t ∈ [, b], we have

∥∥(
�nx∗)(t) –

(
�nx∗∗)(t)

∥∥ ≤ (M∗N∗ + )LMeδσn Kb
∥∥x∗ – x∗∗∥∥

PC .

Since limn→∞ σn = , it follows that

∥∥(
�nx∗)(t) –

(
�nx∗∗)(t)

∥∥ ≤ L
∥∥x∗ – x∗∗∥∥

PC .

Taking the supremum over t,

∥∥�nx∗ –�nx∗∗∥∥
PC ≤ L

∥∥x∗ – x∗∗∥∥
PC ,

where L = (M∗N∗ + )LMKb. By (.), we see that L < . Hence,�n is a contraction on Y .
Claim . �n is convex for each x ∈ V .
In fact, if ϑ 

n, ϑ
n belong to �nx, then there exist f, f ∈ SF ,x̄ such that

ϑ i
n(t) = Rα(t)ϕ() +

∫ t


S(t – s)BB∗S∗

α(t – s)R
(
a,�t


)[

x +
xb – x

m + 

– Rα(t)
[
ϕ() – Rα(σn)G(,ϕ)

]
– Rα(σn)G(t, x̄t )

–
∫ t


Sα(t – η)fi(η) dη

]
ds +

∫ t


Sα(t – s)fi(s) ds, t ∈ [, t], i = , .

Let  ≤ λ≤ . For each t ∈ [, t] we have

(
λϑ 

n + ( – λ)ϑ
n
)
(t)

= Rα(t)ϕ() +
∫ t


S(t – s)BB∗S∗

α(t – s)R
(
a,�t


)[

x +
xb – x

m + 

– Rα(t)
[
ϕ() – Rα(σn)G(,ϕ)

]
– Rα(σn)G(t, x̄t )

–
∫ t


Sα(t – η)

[
λf(η) + ( – λ)f(η)

]
dη

]
ds

+
∫ t


Sα(t – s)

[
λf(s) + ( – λ)f(s)

]
ds.
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Similarly, for any t ∈ (tk , tk+], k = , . . . , m, we have

ϑ i
n(t) = Rα(t – tk)

[
x̄
(
t–
k
)

+ Rα(σn)Ik(x̄tk )
]

+
∫ t

tk

S(t – s)BB∗S∗
α(tk+ – s)R

(
a,�tk+

tk

)[
x +

(k + )(xb – x)
m + 

– Rα(tk+ – tk)
[
x̄
(
t–
k
)

+ Rα(σn)Ik(x̄tk ) – Rα(σn)G(tk , x̄t+
k

)
]

– Rα(σn)G(tk+, x̄tk+ ) –
∫ tk+

tk

Sα(tk+ – η)fi(η) dη
]

ds

+
∫ t

tk

Sα(t – s)fi(s) ds, i = , .

Let  ≤ λ≤ . For each t ∈ (tk , tk+], k = , . . . , m, we have

(
λϑ 

n + ( – λ)ϑ
n
)
(t)

= Rα(t – tk)
[
x̄
(
t–
k
)

+ Rα(σn)Ik(x̄tk )
]

+
∫ t

tk

S(t – s)BB∗S∗
α(tk+ – s)R

(
a,�tk+

tk

)[
x +

(k + )(x – x)
m + 

– Rα(tk+ – tk)
[
x̄
(
t–
k
)

+ Rα(σn)Ik(x̄tk ) – Rα(σn)G(tk , x̄t+
k

)
]

– Rα(σn)G(tk , x̄tk+ ) –
∫ tk+

tk

Sα(tk+ – η)
[
λf(η) + ( – λ)f(η)

]
dη

]
ds

+
∫ t

tk

Sα(t – s)
[
λf(s) + ( – λ)f(s)

]
ds.

Since SF ,x̄ is convex (because F has convex values) we have (λϑ 
n + ( – λ)ϑ

n ) ∈ �nx.
Claim . �n(V ) is completely continuous.
We begin by showing that �n(V ) is equicontinuous. If x ∈ V , it follows that

‖x̄s‖B ≤ Mb‖ϕ‖B + Kbr∗ := r′.

Let  < τ < τ ≤ t. Then we see for each x ∈ V , and ϑn ∈ �nx, that there exists f ∈ SF ,x̄

such that

ϑn(t) = Rα(t)ϕ() +
∫ t


Sα(t – s)Bua

x̄(s) ds +
∫ t


Sα(t – s)f (s) ds. (.)

Then

∥∥ϑn(τ) – ϑn(τ)
∥∥

≤ ∥∥[
Rα(τ) – Rα(τ)

]
ϕ()

∥∥ +
∥∥∥∥
∫ τ–ε



[
Sα(τ – s) – Sα(τ – s)

]
Bux̄(s) ds

∥∥∥∥
+

∥∥∥∥
∫ τ

τ–ε

[
Sα(τ – s) – Sα(τ – s)

]
Bux̄(s) ds

∥∥∥∥ +
∥∥∥∥
∫ τ

τ

Sα(τ – s)Bux̄(s) ds
∥∥∥∥

+
∥∥∥∥
∫ τ–ε



[
Sα(τ – s) – Sα(τ – s)

]
f (s) ds

∥∥∥∥
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+
∥∥∥∥
∫ τ

τ–ε

[
Sα(τ – s) – Sα(τ – s)

]
f (s) ds

∥∥∥∥ +
∥∥∥∥
∫ τ

τ

Sα(τ – s)f (s) ds
∥∥∥∥

≤ ∥∥[
Rα(τ) – Rα(τ)

]
ϕ()

∥∥ +
∫ τ–ε



∥∥Sα(τ – s) – Sα(τ – s)
∥∥N ds

+ M∗
∫ τ

τ–ε
e–δsN ds + Meδτ

∫ τ

τ

e–δsN ds

+�
(
r′)∫ τ–ε



∥∥Sα(τ – s) – Sα(τ – s)
∥∥m(s) ds

+ M∗�
(
r′)∫ τ

τ–ε
e–δsm(s) ds + Meδτ�

(
r′)∫ τ

τ

e–δsm(s) ds.

Similarly, for any τ, τ ∈ (tk , tk+], τ < τ, k = , . . . , m, we have

ϑn(t) = Rα(t – tk)
[
x̄
(
t–
k
)

+ Rα(σn)Ik(x̄tk )
]

+
∫ t

tk

Sα(t – s)Bua
x̄(s) ds +

∫ t

tk

Sα(t – s)f (s) ds. (.)

Then

∥∥ϑn(τ) – ϑn(τ)
∥∥

≤ ∥∥[
Rα(τ) – Rα(τ)

][
x̄
(
t–
k
)

+ Rα(σn)Ik(x̄tk )
]∥∥

+
∥∥∥∥
∫ τ–ε

tk

[
Sα(τ – s) – Sα(τ – s)

]
Bua

x̄(s) ds
∥∥∥∥

+
∥∥∥∥
∫ τ

τ–ε

[
Sα(τ – s) – Sα(τ – s)

]
Bua

x̄(s) ds
∥∥∥∥ +

∥∥∥∥
∫ τ

τ

Sα(τ – s)Bua
x̄(s) ds

∥∥∥∥

+
∥∥∥∥
∫ τ–ε

tk

[
Sα(τ – s) – Sα(τ – s)

]
f (s) ds

∥∥∥∥

+
∥∥∥∥
∫ τ

τ–ε

[
Sα(τ – s) – Sα(τ – s)

]
f (s) ds

∥∥∥∥ +
∥∥∥∥
∫ τ

τ

Sα(τ – s)f (s) ds
∥∥∥∥

≤ ∥∥[
Rα(τ) – Rα(τ)

][
x̄
(
t–
k
)

+ Rα(σn)Ik(x̄tk )
]∥∥

+
∫ τ–ε

tk

∥∥Sα(τ – s) – Sα(τ – s)
∥∥Nk ds

+ M∗
∫ τ

τ–ε
e–δsNk ds + Meδτ

∫ τ

τ

e–δsNk ds

+�
(
r′)∫ τ–ε

tk

∥∥Sα(τ – s) – Sα(τ – s)
∥∥m(s) ds

+ M∗�
(
r′)∫ τ

τ–ε
e–δsm(s) ds + Meδτ�

(
r′)∫ τ

τ

e–δsm(s) ds.

The right-hand side of the above inequality is independent of x ∈ V and tends to zero
as τ → τ, with ε is sufficiently small, since the compactness of Rα(t), Sα(t) for t > 
implies imply the continuity in the uniform operator topology and the set {Rα(σn)Ik(x̄tk ) :
x ∈ V , k = , . . . , m} is relatively compact in H . It remains to prove that the functions �nx,
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x ∈ V , are equicontinuous at t = . Indeed, this is true since Rα(σn) is a compact operator.
Thus, the set {�nx : x ∈ V } is equicontinuous.

Next, we prove that �n(V )(t) = {ϑn(t) : ϑn(t) ∈ �n(V )} is relatively compact for every
t ∈ [, b].

To this end, we decompose �n by �n(V ) = �
n(V ) + �

n(V ), where the map �
n is defined

by �
nx, x ∈ V the set ϑ 

n such that

ϑ 
n(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ t
 Sα(t – s)Bua

x̄(s) ds +
∫ t

 Sα(t – s)f (s) ds, t ∈ [, t],∫ t
t

Sα(t – s)Bua
x̄(s) ds +

∫ t
t

Sα(t – s)f (s) ds, t ∈ (t, t],
...∫ t

tm
Sα(t – s)Bua

x̄(s) ds +
∫ t

tm
Sα(t – s)f (s) ds, t ∈ (tm, b],

and the map �
n is defined by �

nx, x ∈ V the set ϑ
n such that

ϑ
n (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Rα(t)ϕ(), t ∈ [, t],
Rα(t – t)[x̄(t–

 ) + Rα(σn)I(x̄t )], t ∈ (t, t],
...
Rα(t – tm)[x̄(t–

m) + Rα(σn)Im(x̄tm )], t ∈ (tm, b].

We now prove that �
n(V )(t) = {ϑ 

n(t) : ϑ 
n(t) ∈ �

n(V )} is relatively compact for every t ∈
[, b]. Let  < t ≤ s ≤ t be fixed and let ε be a real number satisfying  < ε < t. For x ∈ V ,
we define

ϑ ,ε
n (t) =

∫ t–ε


Sα(t – s)Bua

x̄(s) ds +
∫ t–ε


Sα(t – s)f (s) ds,

where f ∈ SF ,x̄. Using the compactness of Sα(t) for t > , we deduce that the set Uε(t) =
{ϑ ,ε

n (t) : x ∈ V } is relatively compact in H for every ε,  < ε < t. Moreover, for every x ∈ V
we have

∥∥ϑ 
n(t) – ϑ ,ε

n (t)
∥∥ ≤

∥∥∥∥
∫ t

t–ε
Sα(t – s)Bua

x̄(s) ds
∥∥∥∥ +

∥∥∥∥
∫ t

t–ε
Sα(t – s)f (s) ds

∥∥∥∥

≤ M∗
∫ t

t–ε
e–δsN ds + M∗�

(
r′)∫ t

t–ε
e–δsm(s) ds.

Similarly, for any t ∈ (tk , tk+] with k = , . . . , m. Let tk < t ≤ s ≤ tk+ be fixed and let ε be a
real number satisfying  < ε < t. For x ∈ V , we define

ϑ ,ε
n (t) =

∫ t–ε

tk

Sα(t – s)Bua
x̄(s) ds +

∫ t–ε

tk

Sα(t – s)f (s) ds,

where f ∈ SF ,x̄. Using the compactness of Sα(t) for t > , we deduce that the set Uε(t) =
{ϑ ,ε

n (t) : x ∈ V } is relatively compact in H for every ε,  < ε < t. Moreover, for every x ∈ V
we have

∥∥ϑ 
n(t) – ϑ ,ε

n (t)
∥∥ ≤

∥∥∥∥
∫ t

t–ε
Sα(t – s)Bux̄(s) ds

∥∥∥∥ +
∥∥∥∥
∫ t

t–ε
Sα(t – s)f (s) ds

∥∥∥∥

≤ M∗
∫ t

t–ε
e–δsNk ds + M∗�

(
r′)∫ t

t–ε
e–δsm(s) ds.
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The right-hand side of the above inequality tends to zero as ε → . Since there are rel-
atively compact sets arbitrarily close to the set U(t) = {ϑ 

n(t) : x ∈ V }. Hence, the Arzelá-
Ascoli theorem shows that �

n is a compact multivalued map.
Next, we show that �

n(V )(t) = {ϑ
n (t) : ϑ

n (t) ∈ �(V )} is relatively compact for every
t ∈ [, b]. For all t ∈ [, t], since ϑ

n (t) = Rα(t)ϕ(), by (H), it follows that {ϑ
n (t) : t ∈

[, t], x ∈ V } is a compact subset of H . On the other hand, for t ∈ (tk , tk+], k = , . . . , m,
and x ∈ V , there exists r′′ >  such that

[
ϑ̂

n
]

k(t) ∈

⎧⎪⎨
⎪⎩
Rα(t – tk)[x̄(t–

k ) + Rα(σn)Ik(x̄tk )], t ∈ (tk , tk+), x ∈ Br′′ (,Y),
Rα(tk+ – tk)[x̄(t–

k ) + Rα(σn)Ik(x̄tk )], t = tk+, x ∈ Br′′ (,Y),
x̄(t–

k ) + Rα(σn)Ik(x̄tk ), t = tk , x ∈ Br′′ (,Y),

where Br′′ (,Y) is a closed ball of radius r′′. From (.) we obtain Ik(x̄tk ) bounded in H .
By the compactness of (Rα(t))t>, we see {Rα(σn)Ik(x̄tk ) : x ∈ Br′′ (,Y), k = , , . . . , m} are
relatively compact in H . Also, it follows that [ϑ̂

n ]k(t) is relatively compact in H , for all t ∈
[tk , tk+], k = , . . . , m. By Lemma ., we infer that �

n(V ) is relatively compact. Moreover,
using the continuity of the operator Rα(t), for all t ∈ [, b], we conclude that operator �

n

is also a compact multivalued map.
As a consequence of the above Steps -, we conclude that�n =�n +�n is a condensing

map. All of the conditions of Lemma . are satisfied, we deduce that �n has a fixed point
xn ∈ Y , which is in turn a mild solution of problem (.)-(.). Then we have

xn(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rα(t)[ϕ() – Rα(σn)G(,ϕ, )] + Rα(σn)G(t, x̄n,t)
+

∫ t
 Sα(t – s)Bua

x̄n (s) ds +
∫ t

 Sα(t – s)fn(s) ds, t ∈ [, t],
Rα(t – t)[x̄n(t–

 ) + Rα(σn)I(x̄n,t ) – Rα(σn)G(t, x̄n,t+


)]
+ Rα(σn)G(t, x̄n,t) +

∫ t
t
Sα(t – s)Bua

x̄n (s) ds
+

∫ t
t
Sα(t – s)fn(s) ds, t ∈ (t, t],

...
Rα(t – tm)[x̄n(t–

m) + Rα(σn)Im(x̄n,tm ) – Rα(σn)G(tm, x̄n,t+
m )]

+ Rα(σn)G(t, x̄n,t) +
∫ t

tm
Sα(t – s)Bua

x̄n (s) ds
+

∫ t
tm
Sα(t – s)fn(s) ds, t ∈ (tm, b],

(.)

for t ∈ [, b], and some fn ∈ SF ,x̄n .
Next we will show that the set {xn : n ∈ N} is relatively compact in Y . We consider the

decomposition xn = x
n + x

n where

x
n(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–Rα(t)Rα(σn)G(,ϕ) + Rα(σn)G(t, x̄n,t)
+

∫ t
 Sα(t – s)Bua

x̄n (s) ds +
∫ t

 Sα(t – s)fn(s) ds, t ∈ [, t],
–Rα(t – t)Rα(σn)G(t, x̄n,t+


) + Rα(σn)G(t, x̄n,t)

+
∫ t

t
Sα(t – s)Bua

x̄n (s) ds +
∫ t

t
Sα(t – s)fn(s) ds, t ∈ (t, t],

...
–Rα(t – tm)Rα(σn)G(tm, x̄n,t+

m ) + Rα(σn)G(t, x̄n,t)
+

∫ t
tm
Sα(t – s)Bua

x̄n (s) ds +
∫ t

tm
Sα(t – s)fn(s) ds, t ∈ (tm, b],
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for some fn ∈ SF ,x̄n , and

x
n(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Rα(t)ϕ(), t ∈ [, t],
Rα(t – t)[x̄n(t–

 ) + Rα(σn)I(x̄n,t )], t ∈ (t, t],
...
Rα(t – tm)[x̄n(t–

m) + Rα(σn)Im(x̄n,tm )], t ∈ (tm, b].

Step . {x
n(t) : n ∈ N} is relatively compact in Y .

Claim . {x
n : n ∈N} is equicontinuous on J .

For ε > , xn ∈ V , there exists a constant η̂ >  such that, for all t ∈ (, t] and ξ ∈ (, η̂)
with t + ξ ≤ t, we have

∥∥x
n(t + ξ ) – x

n(t)
∥∥

≤ ∥∥[
Rα(t + ξ ) – Rα(t)

]
Rα(σn)G(,ϕ)

∥∥ +
∥∥Rα(σn)

[
G(t + ξ , x̄n,t+ξ , ) – G(t, x̄n,t)

]∥∥

+
∥∥∥∥
∫ t+ξ

t
Sα(t + ξ – s)Bux̄n (s) ds

∥∥∥∥ +
∥∥∥∥
∫ t



[
Sα(t + ξ – s) – Sα(t – s)

]
Bux̄n (s) ds

∥∥∥∥

+
∥∥∥∥
∫ t+ξ

t
Sα(t + ξ – s)fn(s) ds

∥∥∥∥ +
∥∥∥∥
∫ t



[
Sα(t + ξ – s) – Sα(t – s)

]
fn(s) ds

∥∥∥∥
≤ ∥∥[

Rα(t + ξ ) – Rα(t)
]
Rα(σn)G(,ϕ, )

∥∥ + Meδσn L
[
ξ + ‖x̄n,t+ξ – x̄n,t‖B

]

+ M∗
∫ t+ξ

t
e–δsN ds +

∫ t



∥∥Sα(t + ξ – s) – Sα(t – s)
∥∥N ds

+ M∗�
(
r′)∫ t+ξ

t
e–σ sm(s) ds +�

(
r′)∫ t



∥∥Sα(t + ξ – s) – Sα(t – s)
∥∥m(s) ds.

Similarly, for any t ∈ (tk , tk+], k = , . . . , m, we have

∥∥x
n(t + ξ ) – x

n(t)
∥∥

≤ ∥∥[
Rα(t + ξ ) – Rα(t)

]
Rα(δn)G(tk , x̄n,t+

k
)
∥∥ + Meδσn L

[
ξ + ‖x̄n,t+ξ – x̄n,t‖B

]

+ M∗
∫ t+ξ

t
e–σ sNk ds +

∫ t

tk

∥∥Sα(t + ξ – s) – Sα(t – s)
∥∥Nk ds

+ M∗�
(
r′)∫ t+ξ

t
e–δsm(s) ds +�

(
r′)∫ t

tk

∥∥Sα(t + ξ – s) – Sα(t – s)
∥∥m(s) ds.

Then, for all t ∈ (, b], using the compact operator property, we get

∥∥[
Rα(t + ξ ) – Rα(t)

]
Rα(δn)G(,ϕ)

∥∥ <
ε


(.)

or

∥∥[
Rα(t + ξ ) – Rα(t)

]
Rα(δn)G(tk , x̄n,t+

k
)
∥∥ <

ε


, (.)

and

Meδσn L
[
ξ + ‖x̄n,t+ξ – x̄n,t‖B

]
<
ε


, (.)
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M∗
∫ t+ξ

t
e–δsN ds <

ε


, (.)

∫ t



∥∥Sα(t + ξ – s) – Sα(t – s)
∥∥N ds <

ε


, (.)

M∗�
(
r′)∫ t+ξ

t
e–δsm(s) ds <

ε


, (.)

�
(
r′)∫ t



∥∥Sα(t + ξ – s) – Sα(t – s)
∥∥m(s) ds <

ε


, (.)

where N = max≤k≤m{Nk}. By (.)-(.) one has

∥∥x
n(t + ξ ) – x

n(t)
∥∥ < ε.

Therefore, {x
n(t) : n ∈N} is equicontinuous for t ∈ (, b]. Clearly {x

n() : n ∈N} is equicon-
tinuous.

Claim . {x
n(t) : n ∈N} is relatively compact in H .

Let t ∈ (, t], ε > , xn ∈ V , there exists ξ ∈ (, t) such that

∥∥x
n(t) – xξn(t)

∥∥ ≤
∫ t

t–ξ

∥∥S(t – s)Bua
x̄n (s)

∥∥ds +
∫ t

t–ξ

∥∥S(t – s)fn(s)
∥∥ds

≤ M∗
∫ t

t–ξ
e–δsN ds + M∗�

(
r′)∫ t

t–ξ
e–δsm(s) ds < ε,

where xξn(t) = –Rα(t)Rα(σn)G(,ϕ) + Rα(σn)G(t, x̄n,t) +
∫ t–ξ

 Sα(t – s)fn(s) ds for some fn ∈
SF ,x̄n .

Similarly, for any t ∈ (tk , tk+] with k = , . . . , m. ε > , xn ∈ V , there exists ξ ∈ (, t) such
that

∥∥x
n(t) – xξn(t)

∥∥ ≤
∫ t

t–ξ

∥∥S(t – s)Bua
x̄n (s)

∥∥ds +
∫ t

t–ξ

∥∥S(t – s)fn(s)
∥∥ds

≤ M∗
∫ t

t–ξ
e–δsNk ds + M∗�

(
r′)∫ t

t–ξ
e–δsm(s) ds < ε,

where xξn(t) = –Rα(t – tk)Rα(σn)G(tk , x̄n,t+
k

) + Rα(σn)G(t, x̄n,t) +
∫ t–ξ

tk
Sα(t – s)fn(s) ds for

some fn ∈ SF ,x̄n . From (H), we obtain G(tk , x̄n,t+
k

), G(t, x̄n,t) are bounded in H . By the com-
pactness of Rα(t), Sα(t) for t > , we see that the set {xξn(t) : n ∈ N} is relatively compact
in H . Combining the above inequality, one has {x

n(t) : n ∈N} is relatively compact in H .
Step . {x

n(t) : n ∈ N} is relatively compact in Y .
Claim . {x

n : n ∈N} is equicontinuous on J .
For any ε >  and  < t < t. Since Rα(σn) is a compact operator, we find that the set

W = {Rα(σn)G(,ϕ)} is relatively compact in H . From the strong continuity of (Rα(t))t≥,
for ε > , we can choose  < η̂ < b – t such that

∥∥(
Rα(t + ξ ) – Rα(t)

)
ν
∥∥ < ε, ν ∈ W,

when |ξ | < η̂. For each xn ∈ V , t ∈ (, t), such that

∥∥x
n(t + ξ ) – x

n(t)
∥∥ ≤ ∥∥[

Rα(t + ξ ) – Rα(t)
]
Rα(δn)G(,ϕ)

∥∥ < ε.
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Similarly, for any t ∈ (tk , tk+], k = , . . . , m, and ε > . Since Rα(σn) is a compact operator,
we find that the set W = {Rα(σn)Ik(x̄n,tk ) : xn ∈ V } is relatively compact in H . From the
strong continuity of (Rα(t))t≥, for ε > , we can choose  < η̂ < b – t such that

∥∥(
Rα(t + ξ ) – Rα(t)

)
ν
∥∥ <

ε

(r + )
, ν ∈ W,

when |ξ | < η̂. For each xn ∈ V , t ∈ (tk , tk+], k = , . . . , m, such that

∥∥x
n(t + ξ ) – x

n(t)
∥∥ ≤ ∥∥Rα(t + ξ – tk) – Rα(t – tk)

∥∥r′

+
∥∥[
Rα(t + ξ – tk) – Rα(t – tk)

]
Sα(σn)Ik(x̄n,tk )

∥∥ < ε.

As ξ →  and ε sufficiently small, the right-hand side of the above inequality tends to zero
independently of xn, so [x̂

n]k , k = , , . . . , m, are equicontinuous.
Claim . {x

n(t) : n ∈N} is relatively compact in H .
Let t ∈ (, t], xn ∈ V , by (H), it follows that {x

n(t) : t ∈ [, t], xn ∈ V } is a compact subset
of X. Using similar arguments to Step , for t ∈ (tk , tk+], k = , . . . , m, and xn ∈ V , such that

[
x̂

n
]

k(t) ∈

⎧⎪⎨
⎪⎩
Rα(t – tk)[x̄n(t–

k ) + Rα(σn)Ik(x̄n,tk )], t ∈ (tk , tk+), xn ∈ Br′′ (,Y),
Rα(tk+ – tk)[x̄n(t–

k ) + Rα(σn)Ik(x̄n,tk )], t = tk+, xn ∈ Br′′ (,Y),
x̄n(t–

k ) + Rα(σn)Ik(x̄n,tk ), t = tk , xn ∈ Br′′ (,Y),

where Br′′ (,Y) is a closed ball of radius r′′. One sees that [x̂
n]k(t), k = , , . . . , m, is rela-

tively compact for every t ∈ [tk , tk+], and {x
n(t) : n ∈N} is relatively compact in H .

Thus, we obtain the result that the set {xn : n ∈ N} is relatively compact in Y . We may
suppose that

xn → x∗ ∈ Y as n → ∞.

Obviously, x∗ ∈ Y , taking the limits in (.) one has

x∗(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rα(t)[ϕ() – G(,ϕ)] + G(t, x̄∗,t)
+

∫ t
 Sα(t – s)Bux̄∗ (s) ds +

∫ t
 Sα(t – s)f∗(s) ds, t ∈ [, t],

Rα(t – t)[x̄∗(t–
 ) + I(x̄∗,t ) – G(t, x̄∗,t+


)]

+ G(t, x̄∗,t) +
∫ t

t
Sα(t – s)Bux̄∗ (s) ds

+
∫ t

t
Sα(t – s)f∗(s) ds, t ∈ (t, t],

...
Rα(t – tm)[x̄n(t–

m) + Im(x̄∗,tm ) – G(tm, x̄∗,t+
m )]

+ Rα(σn)G(t, x̄∗,t) +
∫ t

tm
Sα(t – s)Bux̄∗ (s) ds

+
∫ t

tm
Sα(t – s)f∗(s) ds, t ∈ (tm, b],

for t ∈ [, b], and some f∗ ∈ SF ,x̄∗ . This implies that x∗ is a mild solution of problem (.)-
(.) and the proof of Theorem . is complete. �

4 Approximate controllability of fractional impulsive control systems
In this section, we present our main result on the approximate controllability of system
(.)-(.). To do this, we also need the following assumption.
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(B) There exists a constant C̃ >  such that

∥∥F(t,ψ , y)
∥∥ = sup

{‖f ‖ : f ∈ F(t,ψ , y)
} ≤ C̃, (t,ψ , y) ∈ J ×B × H .

Theorem . Assume that assumptions of Theorem . hold and, in addition, assumption
(B) is satisfied and the linear system corresponding to system (.)-(.) is approximately
controllable on J . Then system (.)-(.) is approximately controllable on J .

Proof Let xa(·) be a fixed point of � in Y . By Theorem ., any fixed point of � is a mild
solution of system (.)-(.). This means that there is xa ∈�(xa), that is, there is f ∈ SF ,x̄a

such that

xa(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rα(t)[ϕ() – G(,ϕ)] + G(t, x̄a
t )

+
∫ t

 Sα(t – s)Bua
x̄(s) ds +

∫ t
 Sα(t – s)f (s) ds, t ∈ [, t],

Rα(t – t)[x̄a(t–
 ) + I(x̄a

t ) – G(t, x̄a
t+


)]
+ G(t, x̄a

t ) +
∫ t

 Sα(t – s)Bua
x̄(s) ds +

∫ t
t
Sα(t – s)f (s) ds, t ∈ (t, t],

...
Rα(t – tm)[x̄a(t–

m) + Im(x̄a
tm ) – G(tm, x̄a

t+
m

)]
+ G(t, x̄a

t ) +
∫ t

 Sα(t – s)Bua
x̄(s) ds +

∫ t
tm
Sα(t – s)f (s) ds, t ∈ (tm, b],

where

ua
x̄(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B∗S∗
α(t – s)R(a,�t

 )[x + xb–x
m+ – Rα(t)[ϕ() – G(,ϕ)]

– G(t, x̄a
t ) –

∫ t
 Sα(t – η)f (η) dη], s ∈ [, t],

B∗S∗
α(t – s)R(a,�t

t )[x + (xb–x)
m+ – Rα(t – t)[x̄a(t–

 )
+ I(x̄a

t ) – G(t, x̄a
t+


)] – G(t, x̄a
t ) –

∫ t
t
Sα(t – η)f (η) dη], s ∈ (t, t],

...
B∗S∗

α(b – s)R(a,�b
tm )[xb – Rα(b – tm)[x̄a(t–

m)
+ Im(x̄a

tm ) – G(tm, x̄a
t+
m

)] – G(b, x̄a
b) –

∫ b
tm
Sα(b – η)f (η) dη], s ∈ (tm, b],

and it satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xa(t) = x + xb–x
m+ + aR(a,�t

 )[x + xb–x
m+ – Rα(t)[ϕ() – G(,ϕ)]

– G(t, x̄a
t ) –

∫ t
 Sα(t – η)f (η) dη],

xa(t) = x + (xb–x)
m+ + aR(a,�t

t )[x + (xb–x)
m+

– Rα(t – t)[x̄a(t–
 ) + I(x̄a

t ) – G(t, x̄a
t+


)]
– G(t, x̄a

t ) –
∫ t

t
Sα(t – η)f (η) dη],

...
xa(b) = xb + aR(a,�b

tm )[xb – Rα(b – tm)[x̄a(t–
m) + Im(x̄a

tm )
– G(tm, x̄a

t+
m

)] – G(b, x̄a
b) –

∫ b
tm
Sα(b – η)f (η) dη].

By condition (B), we see that

∫ b



∥∥f (s)
∥∥ ds ≤ C̃b.
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Consequently, the sequence {f (η)} is bounded in L([, b], H). Thus there are subse-
quences, still denoted by {f (η)}, that converge weakly to, say, f ∗∗(η) in L([, b], H). The
operator

l(t) →
∫ t


Sα(t – η)l(η) dη

is also compact on L([, b], H), so one has

∫ t


Sα(t – η)

[
f (η) – f ∗∗(η)

]
dη→  as a → +

for all t ∈ [, b].
Define

p
(
xa(·)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x + xb–x
m+ – Rα(t)[ϕ() – G(,ϕ)]

– G(t, x̄a
t ) –

∫ t
 Sα(t – η)f (η) dη, t ∈ [, t],

x + (xb–x)
m+ – Rα(t – t)[x̄a(t–

 ) + I(x̄a
t ) – G(t, x̄a

t+


)]
– G(t, x̄a

t ) –
∫ t

t
Sα(t – η)f (η) dη, t ∈ [t, t],

...
xb – Rα(b – tm)[x̄a(t–

m) + Im(x̄a
tm ) – G(tm, x̄a

t+
m

)]
– G(b, x̄a

b) –
∫ b

tm
Sα(b – η)f (η) dη, t ∈ [tm, b],

q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x + xb–x
m+ – Rα(t)[ϕ() – G(,ϕ)]

– G(t, x̄a
t ) –

∫ t
 Sα(t – η)f ∗∗(η) dη, t ∈ [, t],

x + (xb–x)
m+ – Rα(t – t)[x̄a(t–

 ) + I(x̄a
t ) – G(t, x̄a

t+


)]
– G(t, x̄a

t ) –
∫ t

t
Sα(t – η)f ∗∗(η) dη, t ∈ [t, t],

...
xb – Rα(b – tm)[x̄a(t–

m) + Im(x̄a
tm ) – G(tm, x̄a

t+
m

)]
– G(b, x̄a

b) –
∫ b

tm
Sα(b – η)f ∗∗(η) dη, t ∈ [tm, b].

Hence, for all t ∈ [, b], we find that ‖p(xa) – q‖ →  as a → +. Moreover, from
Lemma ., we get, for t ∈ [, t],

∥∥xa(t) – xt

∥∥ =
∥∥aR

(
a,�t


)(

xa)∥∥
≤ ∥∥aR

(
a,�t


)
q
∥∥ +

∥∥aR
(
a,�t


)[

p
(
xa) – q

]∥∥
≤ ∥∥aR

(
a,�t


)
q
∥∥ +

∥∥p
(
xa) – q

∥∥ →  as a → +.

Similarly, for any t ∈ (tk , tk+], k = , . . . , m, we have

∥∥xa(tk+) – xtk+

∥∥ =
∥∥aR

(
a,�tk+

tk

)(
xa)∥∥

≤ ∥∥aR
(
a,�tk+

tk

)
q
∥∥ +

∥∥aR
(
a,�tk+

tk

)[
p
(
xa) – q

]∥∥
≤ ∥∥aR

(
a,�tk+

tk

)
q
∥∥ +

∥∥p
(
xa) – q

∥∥ →  as a → +.

Thus, for all t ∈ [, b], we get ‖xa(b) – xb‖ →  as a → +. This proves the approximate
controllability of system (.)-(.). �
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5 Application
Consider a fractional impulsive fractional partial neutral functional integrodifferential in-
clusions of the form

Dα
t N(zt)(x) ∈ ∂

∂x N(zt)(x) +
∫ t


(t – s)σ e–μ(t–s) ∂



∂x N(zs)(x) ds + ũ(t, x)

+
∫ t

–∞
b

(
t, s – t, x, z(s, x)

)
ds

–
∫ t



∫ s

–∞
b(t)b

(
s, τ – s, x, z(τ , x)

)
dτ ds,  ≤ t ≤ b,  ≤ x ≤ π , (.)

z(t, ) = z(t,π ) = ,  ≤ t ≤ b, (.)

zt(, x) = ,  ≤ x ≤ π , (.)

z(τ , x) = ϕ(τ , x), τ ≤ ,  ≤ x ≤ π , (.)

�z(tk , x) =
∫ tk

–∞
ηk(s – tk)z(s, x) ds, k = , , . . . , m, (.)

where Dα
t is a Caputo fractional partial derivative of order α ∈ (, ), σ , and μ are positive

numbers, and ũ(·) is a real function of bounded variation on [, b]. In this system,

N(zt)(x) = z(t, x) –
∫ t

–∞
b(s – t)z(s, x) ds.

Let H = L([,π ]) with the norm ‖ · ‖ and define the operators A : D(A) ⊆ H → H by
Aω = ω′′ with the domain

D(A) :=
{
ω ∈ H : ω,ω′ are absolutely continuous,ω′′ ∈ H ,ω() = ω(π ) = 

}
.

Then

Aω =
∞∑

n=

n〈ω,ωn〉ωn, ω ∈ D(A),

where ωn(x) =
√


π

sin(nx), n = , , . . . is the orthogonal set of eigenvectors of A. It is well
known that A generates a strongly continuous semigroup T(t), t ≥  which is compact,
analytic and self-adjoint in X and A is sectorial of type and (P) is satisfied. The operator
Q(t) : D(A) ⊆ H → H , t ≥ , Q(t)x = tσ e–μtx′′ for x ∈ D(A). Moreover, it is easy to see that
conditions (P) and (P) in Section  are satisfied with b(t) = tσ e–μt and D = C∞

 ([,π ]),
where C∞

 ([,π ]) is the space of infinitely differentiable functions that vanish at x =  and
x = π .

Let r ≥ ,  ≤ p <  and let h : (–∞, –r] → R be a nonnegative measurable function
which satisfies the conditions (h-), (h-) in the terminology of Hino et al. []. Briefly,
this means that h is locally integrable and there is a nonnegative, locally bounded function
γ on (–∞, ] such that h(ξ + τ ) ≤ γ (ξ )h(τ ) for all ξ ≤  and ξ ∈ (–∞, –r) \ Nξ , where
Nξ ⊆ (–∞, –r) is a set whose Lebesgue measure zero. We denote by PCr × Lp(h, H) the
set consisting of all classes of functions ϕ : (–∞, ] → H such that ϕ|[–r,] ∈PC([–r, ], H),
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ϕ(·) is Lebesgue measurable on (–∞, –r), and h‖ϕ‖p is Lebesgue integrable on (–∞, –r).
The semi-norm is given by

‖ϕ‖B = sup
–r≤τ≤

∥∥ϕ(τ )
∥∥ +

(∫ –r

–∞
h(τ )

∥∥ϕ(τ )
∥∥p dτ

)/p

.

The space B = PCr × Lp(h, H) satisfies axioms (A)-(C). Moreover, when r =  and p = ,
we can take H̃ = , M(t) = γ (–t)/ and K(t) =  + (

∫ 
–t h(τ ) dτ )/ for t ≥  (see [], Theo-

rem .., for details).
Additionally, we will assume that

(i) The functions b, b : R →R are continuous, and LG = (
∫ 

–∞
(b(s))

h(s) ds) 
 < ∞.

(ii) The functions b, b : R →R are continuous and there exist continuous functions
a, a, a, a : R →R such that

∣∣b(t, s, x, y)
∣∣ ≤ a(t)a(s)|y|, (t, s, x, y) ∈R

,
∣∣b(t, s, x, y)

∣∣ ≤ a(t)a(s)|y|, (t, s, x, y) ∈ R
,

with L̃ = (
∫ 

–∞
(a(s))

h(s) ds) 
 < ∞, L̃ = (

∫ 
–∞

(a(s))

h(s) ds) 
 < ∞.

(iii) The functions ηk : R →R, k = , , . . . , m, are continuous, and
Lk = (

∫ 
–∞

(ηk (s))

h(s) ds) 
 < ∞ for every k = , , . . . , m.

Take ϕ ∈ B = PC × L(h, H) with ϕ(s)(ψ) = ϕ(s,ψ). Let N , G : B → H , F : [, b] × B ×
H →Pbd,cl,cv(H) be the operators defined by

N(ψ)(x) =ψ(, x) + G(ψ)(x),

G(ψ)(x) =
∫ 

–∞
b(s)ψ(s, x) ds,

F(t,ψ , B̃ψ)(x) =
∫ 

–∞
b

(
t, s, x,ψ(s, x)

)
ds + B̃ψ(x),

where

B̃ψ(x) =
∫ t



∫ 

–∞
b(t)b

(
s, τ – s,ψ(τ , x)

)
dτ ds.

Also define the maps Ik and B by

Ik(ψ)(x) =
∫ 

–∞
ηk(s)ψ(s, x) ds,

(Bu)(t)(x) = ũ(t, x).

Using these definitions, we can represent system (.)-(.) in the abstract form (.)-
(.). Moreover, G, Ik are bounded linear operators on B with ‖G‖ ≤ LG and ‖Ik‖ ≤ Lk ,
k = , , . . . , m. Using (ii), we see that F is continuous and ‖F‖L(B,H) ≤ LF , where LF =
L̃‖a‖∞ + b̃L‖b‖∞‖a‖∞. Further, we can impose some suitable conditions on the
above-defined functions to verify the assumptions on Theorem .. Therefore, assump-
tions (H)-(H) and (B) all hold; the associated linear system of (.)-(.) is not exactly
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controllable but it is approximately controllable. Hence by Theorems . and ., system
(.)-(.) is approximately controllable on [, b].
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