17 research outputs found

    A randomized controlled trial of eplerenone in asymptomatic phospholamban p.Arg14del carriers

    Get PDF
    INTRODUCTION Phospholamban (PLN; p.Arg14del) cardiomyopathy is an inherited disease caused by the pathogenic p.Arg14del variant in the PLN gene. Clinically, it is characterized by malignant ventricular arrhythmias and progressive heart failure.1,2 Cardiac fibrotic tissue remodelling occurs early on in PLN p.Arg14del carriers.3,4 Eplerenone was deemed a treatment candidate because of its beneficial effects on ventricular remodelling and antifibrotic properties.5,6 We conducted the multicentre randomized trial ‘intervention in PHOspholamban RElated CArdiomyopathy STudy’ (i-PHORECAST) to assess whether treatment with eplerenone of asymptomatic PLN p.Arg14del carriers attenuates disease onset and progression

    A randomized controlled trial of eplerenone in asymptomatic phospholamban p.Arg14del carriers

    Get PDF
    Phospholamban (PLN; p.Arg14del) cardiomyopathy is an inherited disease caused by the pathogenic p.Arg14del variant in the PLN gene. Clinically, it is characterized by malignant ventricular arrhythmias and progressive heart failure.1,2 Cardiac fibrotic tissue remodelling occurs early on in PLN p.Arg14del carriers.3,4 Eplerenone was deemed a treatment candidate because of its beneficial effects on ventricular remodelling and antifibrotic properties.5,6 We conducted the multicentre randomized trial ‘intervention in PHOspholamban RElated CArdiomyopathy STudy’ (i-PHORECAST) to assess whether treatment with eplerenone of asymptomatic PLN p.Arg14del carriers attenuates disease onset and progression

    Rai1 frees mice from the repression of active wake behaviors by light.

    Get PDF
    Besides its role in vision, light impacts physiology and behavior through circadian and direct (aka 'masking') mechanisms. In Smith-Magenis syndrome (SMS), the dysregulation of both sleep-wake behavior and melatonin production strongly suggests impaired non-visual light perception. We discovered that mice haploinsufficient for the SMS causal gene, Retinoic acid induced-1 (Rai1), were hypersensitive to light such that light eliminated alert and active-wake behaviors, while leaving time-spent-awake unaffected. Moreover, variables pertaining to circadian rhythm entrainment were activated more strongly by light. At the input level, the activation of rod/cone and suprachiasmatic nuclei (SCN) by light was paradoxically greatly reduced, while the downstream activation of the ventral-subparaventricular zone (vSPVZ) was increased. The vSPVZ integrates retinal and SCN input and, when activated, suppresses locomotor activity, consistent with the behavioral hypersensitivity to light we observed. Our results implicate Rai1 as a novel and central player in processing non-visual light information, from input to behavioral output

    Dynamic processes in supramolecular systems

    No full text

    Topographic maps of visual space in the human cerebellum

    No full text

    Programmable supramolecular polymerizations

    No full text
    \u3cp\u3eLiving large: Rational design of self-assembly pathways has been demonstrated in supramolecular polymers. By controlling the concentration of an aggregation-competent monomer through intramolecular interactions, living supramolecular polymerization conditions were achieved. This universal approach can be used to obtain aggregates of well-defined length and narrow dispersity, and allows access to new supramolecular polymer architectures.\u3c/p\u3

    Super resolution imaging of nanoparticles cellular uptake and trafficking

    Get PDF
    Understanding the interaction between synthetic nanostructures and living cells is of crucial importance for the development of nanotechnology-based intracellular delivery systems. Fluorescence microscopy is one of the most widespread tools, owing to its ability to image multiple colors in native conditions. However, due to the limited resolution, it is unsuitable to address individual diffraction-limited objects. Here we introduce a combination of super-resolution microscopy and single-molecule data analysis to unveil the behavior of nanoparticles during their entry into mammalian cells. Two-color Stochastic Optical Reconstruction Microscopy (STORM) addresses the size and positioning of nanoparticles inside tells and probes their interaction with the cellular machineries at nanoscale resolution. Moreover, we develop image analysis tools to extract quantitative information about internalized particles from STORM images. To demonstrate the potential of our methodology, we extract previously inaccessible information by the direct visualization of the nanoparticle uptake mechanism and the intracellular tracking of nanoparticulate model antigens by dendritic cells. Finally, a direct comparison between STORM, confocal microscopy, and electron microscopy is presented, showing that STORM can provide novel and complementary information on nanoparticle cellular uptake

    A stochastic view on surface inhomogeneity of nanoparticles

    Get PDF
    \u3cp\u3eThe interactions between and with nanostructures can only be fully understood when the functional group distribution on their surfaces can be quantified accurately. Here we apply a combination of direct stochastic optical reconstruction microscopy (dSTORM) imaging and probabilistic modelling to analyse molecular distributions on spherical nanoparticles. The properties of individual fluorophores are assessed and incorporated into a model for the dSTORM imaging process. Using this tailored model, overcounting artefacts are greatly reduced and the locations of dye labels can be accurately estimated, revealing their spatial distribution. We show that standard chemical protocols for dye attachment lead to inhomogeneous functionalization in the case of ubiquitous polystyrene nanoparticles. Moreover, we demonstrate that stochastic fluctuations result in large variability of the local group density between particles. These results cast doubt on the uniform surface coverage commonly assumed in the creation of amorphous functional nanoparticles and expose a striking difference between the average population and individual nanoparticle coverage.\u3c/p\u3
    corecore