12 research outputs found

    First port of call : a horizon scanning workshop for sustainable Arctic marine infrastructure

    Get PDF
    Funding Information: The “Scanning the Horizon: Identifying challenges, knowledge gaps and opportunities for sustainable development of port infrastructure for the Arctic’s Shipping Routes” workshop was funded by the Scottish Government’s Arctic Connection Fund; ref No. ACF21-02 ( https://www.gov.scot/publications/arctic-connections-fund-successful-projects/ ) and supported by the EU Horizon 2020 Funded ePICenter project, grant agreement No. 861584 ( https://epicenterproject.eu/ ). The authors would like to thank Jan Dusik of WWF Arctic programme for his considerable contribution to the project proposal and submission, workshop planning and facilitation; Anthony Field, WWF UK for reviewing the workshop report; and Andrea Norgren, WWF Arctic Programme for her help with social media and dissemination of the workshop outputs. In addition, the authors would like to thank the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland is funded by the Scottish Funding Council; grant ref No. HR09011) and contributing institutions) and Hannah Ladd-Jones for their support, provision of the workshop online platform and assistance with workshop facilitation. Publisher Copyright: © 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.Peer reviewedPublisher PD

    A large, curated, open-source stroke neuroimaging dataset to improve lesion segmentation algorithms.

    Get PDF
    Accurate lesion segmentation is critical in stroke rehabilitation research for the quantification of lesion burden and accurate image processing. Current automated lesion segmentation methods for T1-weighted (T1w) MRIs, commonly used in stroke research, lack accuracy and reliability. Manual segmentation remains the gold standard, but it is time-consuming, subjective, and requires neuroanatomical expertise. We previously released an open-source dataset of stroke T1w MRIs and manually-segmented lesion masks (ATLAS v1.2, N = 304) to encourage the development of better algorithms. However, many methods developed with ATLAS v1.2 report low accuracy, are not publicly accessible or are improperly validated, limiting their utility to the field. Here we present ATLAS v2.0 (N = 1271), a larger dataset of T1w MRIs and manually segmented lesion masks that includes training (n = 655), test (hidden masks, n = 300), and generalizability (hidden MRIs and masks, n = 316) datasets. Algorithm development using this larger sample should lead to more robust solutions; the hidden datasets allow for unbiased performance evaluation via segmentation challenges. We anticipate that ATLAS v2.0 will lead to improved algorithms, facilitating large-scale stroke research

    Envejecimiento de la población

    Get PDF
    •Actividades básicas de la vida diaria en personas mayores y factores asociados •Asociación entre depresión y posesión de mascotas en personas mayores •Calidad de vida en adultos mayores de Santiago aplicando el instrumento WHOQOL-BREF •Calidad de vida en usuarios con enfermedad de Parkinson, demencia y sus cuidadores, comuna de Vitacura •Caracterización de egresos hospitalarios de adultos mayores en Puerto Natales (2007-2009) •Comportamiento de las patologías incluidas como GES para el adulto mayor atendido en un Cesfam •Contribución de vitaminas y minerales a las ingestas recomendadas diarias en ancianos institucionalizados de Madrid •Estado de salud oral del paciente inscrito en el Programa de Visita Domiciliaria •Evaluación del programa de discapacidad severa en Casablanca con la matriz de marco lógico •Factores asociados a satisfacción vital en una cohorte de adultos mayores de Santiago, Chile •Pauta instrumental para la identificación de riesgos para el adulto mayor autovalente, en su vivienda •Perfil farmacológico del paciente geriátrico institucionalizado y posibles consecuencias en el deterioro cognitivo •Programa de cuidados paliativos y alivio del dolor en Puerto Natales •Rehabilitación mandibular implantoprotésica: efecto en calidad de vida relacionada con salud bucal en adultos mayores •Salud bucodental en adultos mayores autovalentes de la Región de Valparaíso •Transición epidemiológica y el estudio de carga de enfermedad en Brasi

    Association of Brain Age, Lesion Volume, and Functional Outcome in Patients With Stroke

    Get PDF
    BACKGROUND AND OBJECTIVES: Functional outcomes after stroke are strongly related to focal injury measures. However, the role of global brain health is less clear. In this study, we examined the impact of brain age, a measure of neurobiological aging derived from whole-brain structural neuroimaging, on poststroke outcomes, with a focus on sensorimotor performance. We hypothesized that more lesion damage would result in older brain age, which would in turn be associated with poorer outcomes. Related, we expected that brain age would mediate the relationship between lesion damage and outcomes. Finally, we hypothesized that structural brain resilience, which we define in the context of stroke as younger brain age given matched lesion damage, would differentiate people with good vs poor outcomes. METHODS: We conducted a cross-sectional observational study using a multisite dataset of 3-dimensional brain structural MRIs and clinical measures from the ENIGMA Stroke Recovery. Brain age was calculated from 77 neuroanatomical features using a ridge regression model trained and validated on 4,314 healthy controls. We performed a 3-step mediation analysis with robust mixed-effects linear regression models to examine relationships between brain age, lesion damage, and stroke outcomes. We used propensity score matching and logistic regression to examine whether brain resilience predicts good vs poor outcomes in patients with matched lesion damage. RESULTS: We examined 963 patients across 38 cohorts. Greater lesion damage was associated with older brain age (β = 0.21; 95% CI 0.04-0.38, DISCUSSION: We provide evidence that younger brain age is associated with superior poststroke outcomes and modifies the impact of focal damage. The inclusion of imaging-based assessments of brain age and brain resilience may improve the prediction of poststroke outcomes compared with focal injury measures alone, opening new possibilities for potential therapeutic targets

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)
    corecore