952 research outputs found
Chaotic Signatures of Heart Rate Variability and Its Power Spectrum in Health, Aging and Heart Failure
A paradox regarding the classic power spectral analysis of heart rate variability (HRV) is whether the characteristic high- (HF) and low-frequency (LF) spectral peaks represent stochastic or chaotic phenomena. Resolution of this ftitration undamental issue is key to unraveling the mechanisms of HRV, which is critical to its proper use as a noninvasive marker for cardiac mortality risk assessment and stratification in congestive heart failure (CHF) and other cardiac dysfunctions. However, conventional techniques of nonlinear time series analysis generally lack sufficient sensitivity, specificity and robustness to discriminate chaos from random noise, much less quantify the chaos level. Here, we apply a ‘litmus test’ for heartbeat chaos based on a novel noise assay which affords a robust, specific, time-resolved and quantitative measure of the relative chaos level. Noise titration of running short-segment Holter tachograms from healthy subjects revealed circadian-dependent (or sleep/wake-dependent) heartbeat chaos that was linked to the HF component (respiratory sinus arrhythmia). The relative ‘HF chaos’ levels were similar in young and elderly subjects despite proportional age-related decreases in HF and LF power. In contrast, the near-regular heartbeat in CHF patients was primarily nonchaotic except punctuated by undetected ectopic beats and other abnormal beats, causing transient chaos. Such profound circadian-, age- and CHF-dependent changes in the chaotic and spectral characteristics of HRV were accompanied by little changes in approximate entropy, a measure of signal irregularity. The salient chaotic signatures of HRV in these subject groups reveal distinct autonomic, cardiac, respiratory and circadian/sleep-wake mechanisms that distinguish health and aging from CHF
Structural constraints in complex networks
We present a link rewiring mechanism to produce surrogates of a network where
both the degree distribution and the rich--club connectivity are preserved. We
consider three real networks, the AS--Internet, the protein interaction and the
scientific collaboration. We show that for a given degree distribution, the
rich--club connectivity is sensitive to the degree--degree correlation, and on
the other hand the degree--degree correlation is constrained by the rich--club
connectivity. In particular, in the case of the Internet, the assortative
coefficient is always negative and a minor change in its value can reverse the
network's rich--club structure completely; while fixing the degree distribution
and the rich--club connectivity restricts the assortative coefficient to such a
narrow range, that a reasonable model of the Internet can be produced by
considering mainly the degree distribution and the rich--club connectivity. We
also comment on the suitability of using the maximal random network as a null
model to assess the rich--club connectivity in real networks.Comment: To appear in New Journal of Physics (www.njp.org
Light-Driven Spiral Deformation of Supramolecular Helical Microfibers by Localized Photoisomerization
Stimuli-responsive mechanical deformations widely occur in biological systems but the design of biomimetic shape-changing materials, especially those based on noncovalent interactions, remains highly challenging. Here, hydrogen-bonded supramolecular microfibers are reported, which can perform light-driven spiral deformation by switching an intrinsic azobenzene unit without monomer dissociation. The key design feature rests on rationally spaced multiple hydrogen bonds, which inhibits the disassembly pathway upon irradiation, allowing partial photomechanical actuation of the azobenzene cores in the confined environment of the assemblies. The light-controlled deformation process of the supramolecular microfibers can be switched in a fully reversible manner. This combination of confinement-inhibited disassembly and photoswitching to induce assembly deformation and actuation along length scales supports a distinctive strategy to design supramolecular materials with photomechanical motion
Quantitative trait locus (QTL) analysis of pod related traits in different environments in soybean
Soybean is an important crop, whose most agronomic traits are quantitative inherited. Mapping of these quantitative trait loci in soybean genes is importance for various applications. A F2:15 RIL population containing 149 lines derived from a cross between Charleston as female and Dongnong 594 as male parent were used for mapping of the QTL of pod related traits. Three agronomic traits showing clear phenotypic variations between parents were investigated and relevant QTLs were analyzed with software WindowsQTL Cartographer V2.5. The pod related traits are podwall thickness, weight of podwall, and ratio of podwall to pod (weight to weight). A total of 67 QTLs were mapped for 3 agronomic traits. Some QTLs identified under all environments tend to be valuable for soybean molecular marker assistant breeding selection.Key words: Soybean, pod traits, QTL, different environments
Stationary distributions for diffusions with inert drift
Consider reflecting Brownian motion in a bounded domain in that acquires drift in proportion to the amount of local time spent on the boundary of the domain. We show that the stationary distribution for the joint law of the position of the reflecting Brownian motion and the value of the drift vector has a product form. Moreover, the first component is uniformly distributed on the domain, and the second component has a Gaussian distribution. We also consider more general reflecting diffusions with inert drift as well as processes where the drift is given in terms of the gradient of a potential
Trace the Accretion Geometry of H 1743--322 with Type C Quasi-periodic Oscillations in Multiple Outbursts
We present a systematic analysis of type C quasi-periodic oscillation (QPO)
observations of H 1743--322 throughout the Rossi X-ray Timing Explorer (RXTE)
era. We find that, while different outbursts have significant flux differences,
they show consistent positive correlations between the QPO fractional
root-mean-square (rms) amplitude and non-thermal fraction of the emission,
which indicate an independence of the intrinsic QPO rms on individual outburst
brightness in H 1743--322. However, the dependence of the QPO rms on frequency
is different between the outburst rise and decay phases, where QPO fractional
rms of the decay phase is significantly lower than that of the rise phase at
low frequencies. The spectral analysis also reveals different ranges of coronal
temperature between the two outburst stages. A semi-quantitative analysis shows
that the Lense-Thirring precession model could be responsible for the QPO rms
differences, requiring a variable coronal geometric shape. However, the
variable-Comptonization model could also account for the findings. The fact
that the rms differences and the hysteresis traces in the hardness-intensity
diagram (HID) accompany each other indicates a connection between the two
phenomena. By correlating the findings with QPO phase lags and the
quasi-simultaneous radio flux previously published, we propose there could be
corona-jet transitions in H 1743--322 similar to those that have been recently
reported in GRS 1915+105.Comment: 21 pages, 12 figure
Evaluation of machine-learning methods for ligand-based virtual screening
Machine-learning methods can be used for virtual screening by analysing the structural characteristics of molecules of known (in)activity, and we here discuss the use of kernel discrimination and naive Bayesian classifier (NBC) methods for this purpose. We report a kernel method that allows the processing of molecules represented by binary, integer and real-valued descriptors, and show that it is little different in screening performance from a previously described kernel that had been developed specifically for the analysis of binary fingerprint representations of molecular structure. We then evaluate the performance of an NBC when the training-set contains only a very few active molecules. In such cases, a simpler approach based on group fusion would appear to provide superior screening performance, especially when structurally heterogeneous datasets are to be processed
A bovine lymphosarcoma cell line infected with theileria annulata exhibits an irreversible reconfiguration of host cell gene expression
Theileria annulata, an intracellular parasite of bovine lymphoid cells, induces substantial phenotypic alterations to its host cell including continuous proliferation, cytoskeletal changes and resistance to apoptosis. While parasite induced modulation of host cell signal transduction pathways and NFκB activation are established, there remains considerable speculation on the complexities of the parasite directed control mechanisms that govern these radical changes to the host cell. Our objectives in this study were to provide a comprehensive analysis of the global changes to host cell gene expression with emphasis on those that result from direct intervention by the parasite. By using comparative microarray analysis of an uninfected bovine cell line and its Theileria infected counterpart, in conjunction with use of the specific parasitacidal agent, buparvaquone, we have identified a large number of host cell gene expression changes that result from parasite infection. Our results indicate that the viable parasite can irreversibly modify the transformed phenotype of a bovine cell line. Fifty percent of genes with altered expression failed to show a reversible response to parasite death, a possible contributing factor to initiation of host cell apoptosis. The genes that did show an early predicted response to loss of parasite viability highlighted a sub-group of genes that are likely to be under direct control by parasite infection. Network and pathway analysis demonstrated that this sub-group is significantly enriched for genes involved in regulation of chromatin modification and gene expression. The results provide evidence that the Theileria parasite has the regulatory capacity to generate widespread change to host cell gene expression in a complex and largely irreversible manner
Recommended from our members
Modeling the mitochondrial cardiomyopathy of Barth syndrome with iPSC and heart-on-chip technologies
Studying monogenic mitochondrial cardiomyopathies may yield insights into mitochondrial roles in cardiac development and disease. Here, we combine patient-derived and genetically engineered iPSCs with tissue engineering to elucidate the pathophysiology underlying the cardiomyopathy of Barth syndrome (BTHS), a mitochondrial disorder caused by mutation of the gene Tafazzin (TAZ). Using BTHS iPSC-derived cardiomyocytes (iPSC-CMs), we defined metabolic, structural, and functional abnormalities associated with TAZ mutation. BTHS iPSC-CMs assembled sparse and irregular sarcomeres, and engineered BTHS “heart on chip” tissues contracted weakly. Gene replacement and genome editing demonstrated that TAZ mutation is necessary and sufficient for these phenotypes. Sarcomere assembly and myocardial contraction abnormalities occurred in the context of normal whole cell ATP levels. Excess levels of reactive oxygen species mechanistically linked TAZ mutation to impaired cardiomyocyte function. Our study provides new insights into the pathogenesis of Barth syndrome, suggests new treatment strategies, and advances iPSC-based in vitro modeling of cardiomyopathy
Malnutrition and inflammation in acute kidney injury due to earthquake-related crush syndrome
<p>Abstract</p> <p>Background</p> <p>Malnutrition and inflammation are common and serious complications in patients with acute kidney injury (AKI). However, the profile of these complications in patients with AKI caused by crush syndrome (CS) remains unclear. This study describes the clinical characteristics of malnutrition and inflammation in patients with AKI and CS due to the Wenchuan earthquake.</p> <p>Methods</p> <p>One thousand and twelve victims and eighteen healthy adults were recruited to the study. They were divided into five groups: Group A was composed of victims without CS and AKI (904 cases); Group B was composed of patients with CS and AKI who haven't received renal replacement therapy (RRT) (57 cases); and Group C was composed of patients with CS and AKI receiving RRT (25 cases); Group D was composed of earthquake victims with AKI but without CS (26 cases); and Group E was composed of 18 healthy adult controls. The C-reactive protein (CRP), prealbumin, transferrin, interleukin-6 and TNF-α were measured and compared between Group E and 18 patients from Group C.</p> <p>Results</p> <p>The results indicate that participants in Group C had the highest level of serum creatinine, blood urea nitrogen and uric acid. Approximately 92% of patients with CS who had RRT were suffering from hypoalbuminemia. The interleukin-6 and CRP levels were significantly higher in patients with CS AKI receiving RRT than in the control group. Patients in Group C received the highest dosages of albumin, plasma or red blood cell transfusions. One patient in Group C died during treatment.</p> <p>Conclusions</p> <p>Malnutrition and inflammation was common in patients with earthquake-related CS and had a negative impact on the prognosis of these subjects. The results of this study indicate that the use of RRT, intensive nutritional supplementation and transfusion alleviated the degree of malnutrition and inflammation in hemodialysis patients with crush syndrome.</p
- …