49 research outputs found

    Bio-geomorphic patterns in tidal environments

    Get PDF
    In times of natural and anthropogenic climate change, tidal bio-geomorphic systems are most exposed to possibly irreversible transformations with far-reaching ecological and socio-economic implications. It is thus of critical importance to develop models for predicting the evolution of such systems under varying forcings and, if present, their dynamically-accessible stable states. The notion that freshwater and terrestrial ecosystems may switch abruptly to alternative stable states as a result of feedbacks between consumers and limiting resources is widely acknowledged. On the contrary, theoretical or observational proofs of the existence of alternative equilibrium states in intertidal ecosystems has until recently proven to be elusive. This is due to a prevalent reductionist approach, which has until recently mostly produced either purely ecological or purely geomorphological models, while the coupled dynamics of landforms and biota in the intertidal zone has remained largely unexplored. The presence and continued existence of tidal morphologies, and in particular of salt marshes, is intimately connected with biological activity, especially with the presence of halophytic vegetation. In fact, observations and models coupling geomorphological and biological processes indicate that vegetation crucially affects marsh equilibrium configurations through the production of organic soil, the capture of sediment, and the stabilization against erosion produced by wind waves. Often, different vegetation species live within very narrow elevation intervals, associated with similarly narrow ranges of environmental pressures, thus leading to the emerge of the zonation phenomenon. Here we present modeling analysis on the spatial distribution of geomorphological and vegetational spatial patterns in tidal landscapes arising as a result of two-way feedbacks between physical and biological processes. We challenge the traditional interpretation of zonation as a one--way relation between dominant processes in the intertidal frame (i.e. competition vs. edaphic controls), which fails to capture the active role played by vegetation in engineering its own environment. We use a point model of the coupled elevation-vegetation dynamics, which retains the description of the chief processes shaping these systems, to show how competing stable states are responsible for the formation of characteristic large-scale bio-geomorphic features in tidal landscapes worldwide. Our analyses extended to a one-dimensional context allows us to explore the mechanism that leads to the formation of well-known, smaller-scale patterns associated with marsh vegetation species distributions. We develop and present a model that for the first time incorporates species competition, species mutations, sediment transport and soil accretion in a spatially-extended setting, emphasizing that the formation of smaller-scale intertwined topographic and vegetation patterns are driven by bio-geomorphic feedbacks. We finally analyze the robustness of large-scale and marsh-scale bio-geomorphic features to changes in the forcings, with implications for marsh ecosystem resilience to climate change and anthropogenic pressure

    Computing the relative land subsidence at Venice, Italy, over the last fifty years

    Get PDF
    Abstract: Land subsidence causes various damages to the infrastructures and cultural heritage in many cities worldwide. Urban flooding is one of the main consequences of land subsidence in coastal cities, where it is exacerbated by sea-level rise accompanying global climate change, but also in inland metropolitan areas such as Mexico City, where subsidence zones are increasingly flooded following intense rainstorms. The subsidence of Venice, one of the most beautiful and famous cities in the world, is well known not for the magnitude of subsidence but because subsidence has seriously compromised the heritage and the safety of the city in relation to its small elevation above the sea. The storm that flooded the historical center of Venice on November 4, 1966 dramatically revealed its fragility with respect to land subsidence and sea-level rise, or the Relative Land Subsidence (RLS), i.e. land movement with respect to sea-level changes. That event signaled the beginning of a systematic monitoring of the loss in elevation of the ground surface of Venice with respect to the mean level of the Northern Adriatic (NA) Sea. Tide gauge measurements, available from the beginning of the last century, have been supplied historically by levelling and more recently by Synthetic Aperture Radar (SAR)-based Interferometry. On the occasion of the 50th anniversary of the 1966 flood event, we quantify the RLS experienced by the city over these last five decades with a detail never achieved before. The computation of the loss of elevation has been obtained by processing and superposing the results of levelling surveys carried out in 1961, 1969, 1973, and 1993, together with the results of Interferometric processing of SAR images acquired from satellites: 1993 to 2002 by ERS-1/2, 2003 and 2010 by ENVISAT, 2008 to 2013 by TerraSAR-X, and 2012 to 2016 by COSMO-SkyMED. The records from the tide gauge in Trieste, which is a city on the coast of the NA Sea close to the Alps and known to be stable, are used to evaluate the sea-level rise over the targeted time interval. The mean land velocity (v) for each analyzed period has been obtained by interpolating the original measurements using the Kriging method on a same regular 50-m grid covering the entire city. Then, cumulative land subsidence (LStot)) from 1966 to 2016 has been simulated in a GIS environment by summing the partial land subsidence over the various periods covered by the levelling and SAR surveys. The results point out that in the Venice historical center between 1966 and 2016: • Land subsidence rate has been more variable in space but less variable over time than the changes of the NA mean sea level; • average subsidence has amounted to 0.8 mm/yr and the average NA msl rise to 1.9 mm/yr; • minimum and maximum cumulative subsidence has totalled 8 mm and 93 mm, respectively; and • maximum loss of elevation with respect to the NA msl (i.e. RLS) has been 190 mm. RLS has produced a tangible effect on the Venice historical center revealed by the continuous increase in frequency of the flooding events, locally called "acqua alta". In the next years, any further loss of elevation with respect to the mean sea level, even a few mm, will threaten the city’s survival with severe social and environmental impacts. Considering the present average land subsidence of Venice and sea level rise of the NA (i.e. both about 1.2 mm/yr), an additional loss of elevation of about 190 mm will likely occur by 2100. Actually, according to conservative and pessimistic IPCC scenarios, the sea-level accompanying global climate change is expected to rise from 32 to 56 cm. Therefore, the outcomes from this study should be properly taken in account for the planning of effective interventions for the mitigation of climate changes to maintain the historical center of this unique city

    Computing the relative land subsidence at Venice, Italy, over the last fifty years

    Get PDF
    Abstract: Land subsidence causes various damages to the infrastructures and cultural heritage in many cities worldwide. Urban flooding is one of the main consequences of land subsidence in coastal cities, where it is exacerbated by sea-level rise accompanying global climate change, but also in inland metropolitan areas such as Mexico City, where subsidence zones are increasingly flooded following intense rainstorms. The subsidence of Venice, one of the most beautiful and famous cities in the world, is well known not for the magnitude of subsidence but because subsidence has seriously compromised the heritage and the safety of the city in relation to its small elevation above the sea. The storm that flooded the historical center of Venice on November 4, 1966 dramatically revealed its fragility with respect to land subsidence and sea-level rise, or the Relative Land Subsidence (RLS), i.e. land movement with respect to sea-level changes. That event signaled the beginning of a systematic monitoring of the loss in elevation of the ground surface of Venice with respect to the mean level of the Northern Adriatic (NA) Sea. Tide gauge measurements, available from the beginning of the last century, have been supplied historically by levelling and more recently by Synthetic Aperture Radar (SAR)-based Interferometry. On the occasion of the 50th anniversary of the 1966 flood event, we quantify the RLS experienced by the city over these last five decades with a detail never achieved before. The computation of the loss of elevation has been obtained by processing and superposing the results of levelling surveys carried out in 1961, 1969, 1973, and 1993, together with the results of Interferometric processing of SAR images acquired from satellites: 1993 to 2002 by ERS-1/2, 2003 and 2010 by ENVISAT, 2008 to 2013 by TerraSAR-X, and 2012 to 2016 by COSMO-SkyMED. The records from the tide gauge in Trieste, which is a city on the coast of the NA Sea close to the Alps and known to be stable, are used to evaluate the sea-level rise over the targeted time interval. The mean land velocity (v) for each analyzed period has been obtained by interpolating the original measurements using the Kriging method on a same regular 50-m grid covering the entire city. Then, cumulative land subsidence (LStot)) from 1966 to 2016 has been simulated in a GIS environment by summing the partial land subsidence over the various periods covered by the levelling and SAR surveys. The results point out that in the Venice historical center between 1966 and 2016: • Land subsidence rate has been more variable in space but less variable over time than the changes of the NA mean sea level; • average subsidence has amounted to 0.8 mm/yr and the average NA msl rise to 1.9 mm/yr; • minimum and maximum cumulative subsidence has totalled 8 mm and 93 mm, respectively; and • maximum loss of elevation with respect to the NA msl (i.e. RLS) has been 190 mm. RLS has produced a tangible effect on the Venice historical center revealed by the continuous increase in frequency of the flooding events, locally called "acqua alta". In the next years, any further loss of elevation with respect to the mean sea level, even a few mm, will threaten the city’s survival with severe social and environmental impacts. Considering the present average land subsidence of Venice and sea level rise of the NA (i.e. both about 1.2 mm/yr), an additional loss of elevation of about 190 mm will likely occur by 2100. Actually, according to conservative and pessimistic IPCC scenarios, the sea-level accompanying global climate change is expected to rise from 32 to 56 cm. Therefore, the outcomes from this study should be properly taken in account for the planning of effective interventions for the mitigation of climate changes to maintain the historical center of this unique city

    COSMO-SkyMed vs RADARSAT-2 for Monitoring Natural and Anthropogenic Components of the Land Movements in Venice

    Get PDF
    We present the result of a test aimed at evaluating the capability of RADARSAT-2 and COSMO-SkyMed to map the natural subsidence and ground movements induced by anthropogenic activities in the historical center of Venice. Firstly, ground movements have been retrieved at quite long- and short-term by the Persistent Scattered Interferometry (PSI) on 2008-2015 RADARSAT-2 and 2013-2015 COSMO-SkyMed image stacks, respectively. Secondly, PSI has been calibrated at regional scale using the records of permanent GPS stations. Thirdly, considering that over the last two decades “in the historical center of Venice” natural land movements are primarily ascribed to long-term processes, and those induced by human activities act at short-term, we have properly resampled 83-month RADARSAT-2 C-band and 27-month COSMO-SkyMed X-band interferometric products by a common grid and processed the outcome to estimate the two components of the displacements. Results show that the average natural subsidence is generally in the range of 0.9 – 1.1 mm/yr and the anthropogenic ground movements are up to 2 mm/yr

    Combining L- and X-Band SAR interferometry to assess ground displacements in heterogeneous coastal environments: The Po River Delta and Venice Lagoon, Italy

    Get PDF
    From leveling to SAR-based interferometry, the monitoring of land subsidence in coastal transitional environments significantly improved. However, the simultaneous assessment of the ground movements in these peculiar environments is still challenging. This is due to the presence of relatively small built-up zones and infrastructures, e.g., coastal infrastructures, bridges, and river embankments, within large natural or rural lands, e.g., river deltas, lagoons, and farmland. In this paper we present a multi-band SAR methodology to integrate COSMO-SkyMed and ALOS-PALSAR images. The method consists of a proper combination of the very high-resolution X-band Persistent Scatterer Interferometry (PSI), which achieves high-density and precise measurements on single structures and constructed areas, with L-band Short-Baseline SAR Interferometry (SBAS), properly implemented to raise its effectiveness in retrieving information in vegetated and wet zones. The combined methodology is applied on the Po River Delta and Venice coastland, Northern Italy, using 16 ALOS-PALSAR and 31 COSMO-SkyMed images covering the period between 2007 and 2011. After a proper calibration of the single PSI and SBAS solution using available GPS records, the datasets have been combined at both the regional and local scales. The measured displacements range from ~0 mm/yr down to -35 mm/yr. The results reveal the variable pattern of the subsidence characterizing the more natural and rural environments without losing the accuracy in quantifying the sinking of urban areas and infrastructures. Moreover, they allow improving the interpretation of the natural and anthropogenic processes responsible for the ongoing subsidence

    Hydrogeological effects of dredging navigable canals through lagoon shallows. A case study in Venice

    Get PDF
    For the first time a comprehensive investigation has been carried out to quantify the possible effects of dredging a navigable canal on the hydrogeological system underlying a coastal lagoon. The study is focused on the Venice Lagoon, Italy, where the port authority is planning to open a new 10m deep and 3km long canal to connect the city passenger terminal to the central lagoon inlet, thus avoiding the passage of large cruise ships through the historic center of Venice. A modeling study has been developed to evaluate the short (minutes), medium (months), and long (decades) term processes of water and pollutant exchange between the shallow aquifer system and the lagoon, possibly enhanced by the canal excavation, and ship wakes. An in-depth characterization of the lagoon subsurface along the channel has supported the numerical modeling. Piezometer and sea level records, geophysical acquisitions, laboratory analyses of groundwater and sediment samples (chemical analyses and ecotoxicity testing), and the outcome of 3-D hydrodynamic and computational fluid dynamic (CFD) models have been used to set up and calibrate the subsurface multi-model approach. The numerical outcomes allow us to quantify the groundwater volume and estimate the mass of anthropogenic contaminants (As, Cd, Cu, Cr, Hg, Pb, Se) likely leaked from the nearby industrial area over the past decades, and released into the lagoon from the canal bed by the action of depression waves generated by ships. Moreover, the model outcomes help to understand the effect of the hydrogeological layering on the propagation of the tidal fluctuation and salt concentration into the shallow brackish aquifers underlying the lagoon bottom.Facultad de Ciencias Naturales y MuseoCentro de Investigaciones Geológica

    Paleochannel and beach-bar palimpsest topography as initial substrate for coralligenous buildups offshore Venice, Italy

    Get PDF
    We provide a model for the genesis of Holocene coralligenous buildups occurring in the northwestern Adriatic Sea offshore Venice at 17-24 m depth. High-resolution geophysical surveys and underwater SCUBA diving reconnaissance revealed meandering shaped morphologies underneath bio-concretionned rocky buildups. These morphologies are inferred to have been inherited from Pleistocene fluvial systems reactivated as tidal channels during the post-Last Glacial Maximum transgression, when the study area was a lagoon protected by a sandy barrier. The lithification of the sandy fossil channel-levee systems is estimated to have occurred at ca. 7 cal. ka BP, likely due to the interaction between marine and less saline fluids related to onshore freshwater discharge at sea through a sealed water-table. The carbonate-cemented sandy layers served as nucleus for subsequent coralligenous buildups growth.Contiene material complementario: consultar en https://www.nature.com/articles/s41598-017-01483-z#Sec5Centro de Investigaciones Geológica

    Hydrogeological effects of dredging navigable canals through lagoon shallows. A case study in Venice

    Get PDF
    For the first time a comprehensive investigation has been carried out to quantify the possible effects of dredging a navigable canal on the hydrogeological system underlying a coastal lagoon. The study is focused on the Venice Lagoon, Italy, where the port authority is planning to open a new 10m deep and 3km long canal to connect the city passenger terminal to the central lagoon inlet, thus avoiding the passage of large cruise ships through the historic center of Venice. A modeling study has been developed to evaluate the short (minutes), medium (months), and long (decades) term processes of water and pollutant exchange between the shallow aquifer system and the lagoon, possibly enhanced by the canal excavation, and ship wakes. An in-depth characterization of the lagoon subsurface along the channel has supported the numerical modeling. Piezometer and sea level records, geophysical acquisitions, laboratory analyses of groundwater and sediment samples (chemical analyses and ecotoxicity testing), and the outcome of 3-D hydrodynamic and computational fluid dynamic (CFD) models have been used to set up and calibrate the subsurface multi-model approach. The numerical outcomes allow us to quantify the groundwater volume and estimate the mass of anthropogenic contaminants (As, Cd, Cu, Cr, Hg, Pb, Se) likely leaked from the nearby industrial area over the past decades, and released into the lagoon from the canal bed by the action of depression waves generated by ships. Moreover, the model outcomes help to understand the effect of the hydrogeological layering on the propagation of the tidal fluctuation and salt concentration into the shallow brackish aquifers underlying the lagoon bottom.Facultad de Ciencias Naturales y MuseoCentro de Investigaciones Geológica
    corecore