39 research outputs found
Cosmological distance indicators
We review three distance measurement techniques beyond the local universe:
(1) gravitational lens time delays, (2) baryon acoustic oscillation (BAO), and
(3) HI intensity mapping. We describe the principles and theory behind each
method, the ingredients needed for measuring such distances, the current
observational results, and future prospects. Time delays from strongly lensed
quasars currently provide constraints on with < 4% uncertainty, and with
1% within reach from ongoing surveys and efforts. Recent exciting discoveries
of strongly lensed supernovae hold great promise for time-delay cosmography.
BAO features have been detected in redshift surveys up to z <~ 0.8 with
galaxies and z ~ 2 with Ly- forest, providing precise distance
measurements and with < 2% uncertainty in flat CDM. Future BAO
surveys will probe the distance scale with percent-level precision. HI
intensity mapping has great potential to map BAO distances at z ~ 0.8 and
beyond with precisions of a few percent. The next years ahead will be exciting
as various cosmological probes reach 1% uncertainty in determining , to
assess the current tension in measurements that could indicate new
physics.Comment: Review article accepted for publication in Space Science Reviews
(Springer), 45 pages, 10 figures. Chapter of a special collection resulting
from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in
the Space Ag
Toward an internally consistent astronomical distance scale
Accurate astronomical distance determination is crucial for all fields in
astrophysics, from Galactic to cosmological scales. Despite, or perhaps because
of, significant efforts to determine accurate distances, using a wide range of
methods, tracers, and techniques, an internally consistent astronomical
distance framework has not yet been established. We review current efforts to
homogenize the Local Group's distance framework, with particular emphasis on
the potential of RR Lyrae stars as distance indicators, and attempt to extend
this in an internally consistent manner to cosmological distances. Calibration
based on Type Ia supernovae and distance determinations based on gravitational
lensing represent particularly promising approaches. We provide a positive
outlook to improvements to the status quo expected from future surveys,
missions, and facilities. Astronomical distance determination has clearly
reached maturity and near-consistency.Comment: Review article, 59 pages (4 figures); Space Science Reviews, in press
(chapter 8 of a special collection resulting from the May 2016 ISSI-BJ
workshop on Astronomical Distance Determination in the Space Age
DLG4-related synaptopathy: a new rare brain disorder
PURPOSE: Postsynaptic density protein-95 (PSD-95), encoded by DLG4, regulates excitatory synaptic function in the brain. Here we present the clinical and genetic features of 53 patients (42 previously unpublished) with DLG4 variants.METHODS: The clinical and genetic information were collected through GeneMatcher collaboration. All the individuals were investigated by local clinicians and the gene variants were identified by clinical exome/genome sequencing.RESULTS: The clinical picture was predominated by early onset global developmental delay, intellectual disability, autism spectrum disorder, and attention deficit-hyperactivity disorder, all of which point to a brain disorder. Marfanoid habitus, which was previously suggested to be a characteristic feature of DLG4-related phenotypes, was found in only nine individuals and despite some overlapping features, a distinct facial dysmorphism could not be established. Of the 45 different DLG4 variants, 39 were predicted to lead to loss of protein function and the majority occurred de novo (four with unknown origin). The six missense variants identified were suggested to lead to structural or functional changes by protein modeling studies.CONCLUSION: The present study shows that clinical manifestations associated with DLG4 overlap with those found in other neurodevelopmental disorders of synaptic dysfunction; thus, we designate this group of disorders as DLG4-related synaptopathy.Genetics of disease, diagnosis and treatmen
A novel approach to estimate direct and indirect water withdrawals from satellite measurements: a case study from the Incomati basin
The Incomati basin encompasses parts of South Africa, Swaziland and Mozambique, and is a water stressed basin. Equitable allocation of water is crucial to sustain livelihoods and agro-ecosystems, and to sustain international agreements. As compliance monitoring of water distribution by flow meters is laborious, expensive and only partially feasible, a novel approach has been developed to estimate water withdrawals using satellite measurements. Direct withdrawals include pumping from rivers, impoundments and groundwater, for irrigation and other human uses. Indirect withdrawals include evaporation processes from groundwater storage, unconfined shallow aquifers, seepage zones, lakes and reservoirs, and inundations, in addition to evaporation from pristine land surface conditions. Indirect withdrawals intercept lateral flow of water and reduce downstream flow. An innovative approach has been developed that employs three main spatial data layers inferred from satellite measurements: land use, rainfall, and evaporation. The evaporation/rainfall ratio was computed for all natural land use classes and used to distinguish between evaporation from rainfall and incremental evaporation caused by water withdrawals. The remote sensing measurements were validated against measured evaporative flux, stream flow pumping volume, and stream flow reductions. Afforested areas in the whole basin was responsible for an indirect withdrawal of 1241 Mm3/yr during an average rainfall year while the tripartite agreement among the riparian countries specifies a permitted total withdrawal of 546 Mm3/yr. However, the irrigation sector is responsible for direct withdrawals of 555 Mm3/yr only while their allocated share is 1327 Mm3/yr – the long term total withdrawals are thus in line with the tripartite agreement. South Africa withdraws 1504 Mm3/yr while their share is 1261 Mm3/yr. The unmetered stream flow reduction from the afforested areas in South Africa represents the big uncertainty factor. The methodology described using remotely sensed measurements to estimate direct and indirect withdrawals has the potential to be applied more widely to water stressed basins having limited availability of field data
Two Leishmania species circulating in the Kaleybar focus of infantile visceral leishmaniasis, northwest Iran: implications for deltamethrin dog collar intervention
Leishmania infantum is the causative agent of infantile visceral leishmaniasis (IVL) in the Mediterranean Basin and, based on isoenzyme typing of a few isolates from patients and domestic dogs, this parasite was considered to predominate in the Kaleybar focus of IVL in northwest Iran. However, in the current investigation only one out of five sandfly infections was found to be L. infantum, based on PCR detection and sequencing of parasite internal transcribed spacer (ITS) rDNA infecting Phlebotomus perfiliewi transcaucasicus. The four other infections were of haplotypes of L. tropica, the causative agent of anthroponotic cutaneous leishmaniasis in the Middle East and a parasite occasionally detected in the viscera of dogs and patients in Iran and elsewhere. The widespread distribution of L. tropica in the Kaleybar focus suggests that this parasite is not a transient introduction. Kaleybar has been used for a deltamethrin dog collar intervention to reduce the biting rates of the vectors of L. infantum and this has significantly reduced the incidence of Leishmania infections both in children and the domestic dog, the usual reservoir host of IVL. The implications of finding L. tropica widespread in the heart of the intervention area are discussed. Extensive and intensive typing of natural Leishmania infections is a characteristic of epidemiological investigations in the Neotropics and the current report indicates that this will also be necessary in some regions of the Old World. (C) 2008 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved
Filovirus receptor NPC1 contributes to species-specific patterns of ebolavirus susceptibility in bats
10.7554/eLife.11785eLife442339e1178