180 research outputs found

    Racial and socioeconomic disparities in hip fracture care

    Get PDF
    BACKGROUND: Despite declines in both the incidence of and mortality following hip fracture, there are racial and socioeconomic disparities in treatment access and outcomes. We evaluated the presence and implications of disparities in delivery of care, hypothesizing that race and community socioeconomic characteristics would influence quality of care for patients with a hip fracture. METHODS: We collected data from the New York State Department of Health Statewide Planning and Research Cooperative System (SPARCS), which prospectively captures information on all discharges from nonfederal acute-care hospitals in New York State. Records for 197,290 New York State residents who underwent surgery for a hip fracture between 1998 and 2010 in New York State were identified from SPARCS using International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes. Multivariable regression models were used to evaluate the association of patient characteristics, social deprivation, and hospital/surgeon volume with time from admission to surgery, in-hospital complications, readmission, and 1-year mortality. RESULTS: After adjusting for patient and surgery characteristics, hospital/surgeon volume, social deprivation, and other variables, black patients were at greater risk for delayed surgery (odds ratio [OR] = 1.49; 95% confidence interval [CI] = 1.42, 1.57), a reoperation (hazard ratio [HR] = 1.21; CI = 1.11, 1.32), readmission (OR = 1.17; CI = 1.11, 1.22), and 1-year mortality (HR = 1.13; CI = 1.07, 1.21) than white patients. Subgroup analyses showed a greater risk for delayed surgery for black and Asian patients compared with white patients, regardless of social deprivation. Additionally, there was a greater risk for readmission for black patients compared with white patients, regardless of social deprivation. Compared with Medicare patients, Medicaid patients were at increased risk for delayed surgery (OR = 1.17; CI = 1.10, 1.24) whereas privately insured patients were at decreased risk for delayed surgery (OR = 0.77; CI = 0.74, 0.81), readmission (OR = 0.77; CI = 0.74, 0.81), complications (OR = 0.80; CI = 0.77, 0.84), and 1-year mortality (HR = 0.80; CI = 0.75, 0.85). CONCLUSIONS: There are race and insurance-based disparities in delivery of care for patients with hip fracture, some of which persist after adjusting for social deprivation. In addition to investigation into reasons contributing to disparities, targeted interventions should be developed to mitigate effects of disparities on patients at greatest risk. LEVEL OF EVIDENCE: Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence

    Longitudinal seroepidemiologic study of the 2009 pandemic influenza A (H1N1) infection among health care workers in a children's hospital

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To probe seroepidemiology of the 2009 pandemic influenza A (H1N1) among health care workers (HCWs) in a children's hospital.</p> <p>Methods</p> <p>From August 2009 to March 2010, serum samples were drawn from 150 HCWs in a children's hospital in Taipei before the 2009 influenza A (H1N1) pandemic, before H1N1 vaccination, and after the pandemic. HCWs who had come into direct contact with 2009 influenza A (H1N1) patients or their clinical respiratory samples during their daily work were designated as a high-risk group. Antibody levels were determined by hemagglutination inhibition (HAI) assay. A four-fold or greater increase in HAI titers between any successive paired sera was defined as seroconversion, and factors associated with seroconversion were analyzed.</p> <p>Results</p> <p>Among the 150 HCWs, 18 (12.0%) showed either virological or serological evidence of 2009 pandemic influenza A (H1N1) infection. Of the 90 unvaccinated HCWs, baseline and post-pandemic seroprotective rates were 5.6% and 20.0%. Seroconversion rates among unvaccinated HCWs were 14.4% (13/90), 22.5% (9/40), and 8.0% (4/50) for total, high-risk group, and low-risk group, respectively. Multivariate analysis revealed being in the high-risk group is an independent risk factor associated with seroconversion.</p> <p>Conclusion</p> <p>The infection rate of 2009 pandemic influenza A (H1N1) in HCWs was moderate and not higher than that for the general population. The majority of unvaccinated HCWs remained susceptible. Direct contact of influenza patients and their respiratory samples increased the risk of infection.</p

    Analysis of folylpoly-γ-glutamate synthetase gene expression in human B-precursor ALL and T-lineage ALL cells

    Get PDF
    BACKGROUND: Expression of folylpoly-γ-glutamate synthetase (FPGS) gene is two- to three-fold higher in B-precursor ALL (Bp- ALL) than in T-lineage ALL (T-ALL) and correlates with intracellular accumulation of methotrexate (MTX) polyglutamates and lymphoblast sensitivity to MTX. In this report, we investigated the molecular regulatory mechanisms directing FPGS gene expression in Bp-ALL and T-ALL cells. METHODS: To determine FPGS transcription rate in Bp-ALL and T-ALL we used nuclear run-on assays. 5'-RACE was used to uncover potential regulatory regions involved in the lineage differences. We developed a luciferase reporter gene assay to investigate FPGS promoter/enhancer activity. To further characterize the FPGS proximal promoter, we determined the role of the putative transcription binding sites NFY and E-box on FPGS expression using luciferase reporter gene assays with substitution mutants and EMSA. RESULTS: FPGS transcription initiation rate was 1.6-fold higher in NALM6 vs. CCRF-CEM cells indicating that differences in transcription rate led to the observed lineage differences in FPGS expression between Bp-ALL and T-ALL blasts. Two major transcripts encoding the mitochondrial/cytosolic and cytosolic isoforms were detected in Bp-ALL (NALM6 and REH) whereas in T-ALL (CCRF-CEM) cells only the mitochondrial/cytosolic transcript was detected. In all DNA fragments examined for promoter/enhancer activity, we measured significantly lower luciferase activity in NALM6 vs. CCRF-CEM cells, suggesting the need for additional yet unidentified regulatory elements in Bp-ALL. Finally, we determined that the putative transcription factor binding site NFY, but not E-box, plays a role in FPGS transcription in both Bp- and T-lineage. CONCLUSION: We demonstrated that the minimal FPGS promoter region previously described in CCRF-CEM is not sufficient to effectively drive FPGS transcription in NALM6 cells, suggesting that different regulatory elements are required for FPGS gene expression in Bp-cells. Our data indicate that the control of FPGS expression in human hematopoietic cells is complex and involves lineage-specific differences in regulatory elements, transcription initiation rates, and mRNA processing. Understanding the lineage-specific mechanisms of FPGS expression should lead to improved therapeutic strategies aimed at overcoming MTX resistance or inducing apoptosis in leukemic cells

    A Forward Chemical Screen in Zebrafish Identifies a Retinoic Acid Derivative with Receptor Specificity

    Get PDF
    Background: Retinoids regulate key developmental pathways throughout life, and have potential uses for differentiation therapy. It should be possible to identify novel retinoids by coupling new chemical reactions with screens using the zebrafish embryonic model. Principal Findings: We synthesized novel retinoid analogues and derivatives by amide coupling, obtaining 80–92% yields. A small library of these compounds was screened for bioactivity in living zebrafish embryos. We found that several structurally related compounds significantly affect development. Distinct phenotypes are generated depending on time of exposure, and we characterize one compound (BT10) that produces specific cardiovascular defects when added 1 day post fertilization. When compared to retinoic acid (ATRA), BT10 shows similar but not identical changes in the expression pattern of embryonic genes that are known targets of the retinoid pathway. Reporter assays determined that BT10 interacts with all three RAR receptor sub-types, but has no activity for RXR receptors, at all concentrations tested. Conclusions: Our screen has identified a novel retinoid with specificity for retinoid receptors. This lead compound may be useful for manipulating components of retinoid signaling networks, and may be further derivatized for enhanced activity

    Mechanism of Dinitrochlorobenzene-Induced Dermatitis in Mice: Role of Specific Antibodies in Pathogenesis

    Get PDF
    Dinitrochlorobenzene-induced contact hypersensitivity is widely considered as a cell-mediated rather than antibody-mediated immune response. At present, very little is known about the role of antigen-specific antibodies and B cells in the development of dinitrochlorobenzene-induced hypersensitivity reactions, and this is the subject of the present investigation.Data obtained from multiple lines of experiments unequivocally showed that the formation of dinitrochlorobenzene-specific Abs played an important role in the development of dinitrochlorobenzene-induced contact hypersensitivity. The appearance of dinitrochlorobenzene-induced skin dermatitis matched in timing the appearance of the circulating dinitrochlorobenzene-specific antibodies. Adoptive transfer of sera containing dinitrochlorobenzene-specific antibodies from dinitrochlorobenzene-treated mice elicited a much stronger hypersensitivity reaction than the adoptive transfer of lymphocytes from the same donors. Moreover, dinitrochlorobenzene-induced contact hypersensitivity was strongly suppressed in B cell-deficient mice with no DNCB-specific antibodies. It was also observed that treatment of animals with dinitrochlorobenzene polarized Th cells into Th2 differentiation by increasing the production of Th2 cytokines while decreasing the production of Th1 cytokines.In striking contrast to the long-held belief that dinitrochlorobenzene-induced contact hypersensitivity is a cell-mediated immune response, the results of our present study demonstrated that the production of dinitrochlorobenzene-specific antibodies by activated B cells played an indispensible role in the pathogenesis of dinitrochlorobenzene-induced CHS. These findings may provide new possibilities in the treatment of human contact hypersensitivity conditions

    Genetic and Mechanistic Evaluation for the Mixed-Field Agglutination in B3 Blood Type with IVS3+5G>A ABO Gene Mutation

    Get PDF
    Background: The ABO blood type B3 is the most common B subtype in the Chinese population with a frequency of 1/900. Although IVS3+5G.A (rs55852701) mutation of B gene has been shown to associate with the development of B3 blood type, genetic and mechanistic evaluation for the unique mixed-field agglutination phenotype has not yet been completely addressed. Methodology/Principal Findings: In this study, we analyzed 16 cases of confirmed B3 individuals and found that IVS3+5G.A attributes to all cases of B3. RT-PCR analyses revealed the presence of at least 7 types of aberrant B3 splicing transcripts with most of the transcripts causing early termination and producing non-functional protein during translation. The splicing transcript without exon 3 that was predicted to generate functional B3 glycosyltransferase lacking 19 amino acids at the N-terminal segment constituted only 0.9 % of the splicing transcripts. Expression of the B3 cDNA with exon 3 deletion in the K562 erythroleukemia cells revealed that the B3 glycosyltransferase had only 40 % of B1 activity in converting H antigen to B antigen. Notably, the typical mixed-field agglutination of B3-RBCs can be mimicked by adding anti-B antibody to the K562-B3 cells. Conclusions/Significance: This study thereby demonstrates that both aberrant splicing of B transcripts and the reduced B3 glycosyltransferase activity contribute to weak B expression and the mixed-field agglutination of B3, adding to th

    TcOPT3, a Member of Oligopeptide Transporters from the Hyperaccumulator Thlaspi caerulescens, Is a Novel Fe/Zn/Cd/Cu Transporter

    Get PDF
    BACKGROUND: Thlaspi caerulescens is a natural selected heavy metal hyperaccumulator that can not only tolerate but also accumulate extremely high levels of heavy metals in the shoots. Thus, to identify the transportors involved in metal long-distance transportation is very important for understanding the mechanism of heavy metal accumulation in this hyperaccumulator. METHODOLOGY/PRINCIPAL FINDINGS: We cloned and characterized a novel gene TcOPT3 of OPT family from T. caerulescens. TcOPT3 was pronouncedly expressed in aerial parts, including stem and leaf. Moreover, in situ hybridization analyses showed that TcOPT3 expressed in the plant vascular systems, especially in the pericycle cells that may be involved in the long-distance transportation. The expression of TcOPT3 was highly induced by iron (Fe) and zinc (Zn) deficiency, especially in the stem and leaf. Sub-cellular localization showed that TcOPT3 was a plasma membrane-localized protein. Furthermore, heterogonous expression of TcOPT3 by mutant yeast (Saccharomyces cerevisiae) complementation experiments demonstrated that TcOPT3 could transport Fe(2+) and Zn(2+). Moreover, expression of TcOPT3 in yeast increased metal (Fe, Zn, Cu and Cd) accumulation and resulted in an increased sensitivity to cadmium (Cd) and copper (Cu). CONCLUSIONS: Our data demonstrated that TcOPT3 might encode an Fe/Zn/Cd/Cu influx transporter with broad-substrate. This is the first report showing that TcOPT3 may be involved in metal long-distance transportation and contribute to the heavy metal hyperaccumulation

    A statistical method for region-based meta-analysis of genome-wide association studies in genetically diverse populations

    Get PDF
    Genome-wide association studies (GWAS) have become the preferred experimental design in exploring the genetic etiology of complex human traits and diseases. Standard SNP-based meta-analytic approaches have been utilized to integrate the results from multiple experiments. This fundamentally assumes that the patterns of linkage disequilibrium (LD) between the underlying causal variants and the directly genotyped SNPs are similar across the populations for the same SNPs to emerge with surrogate evidence of disease association. We introduce a novel strategy for assessing regional evidence of phenotypic association that explicitly incorporates the extent of LD in the region. This provides a natural framework for combining evidence from multi-ethnic studies of both dichotomous and quantitative traits that (i) accommodates different patterns of LD, (ii) integrates different genotyping platforms and (iii) allows for the presence of allelic heterogeneity between the populations. Our method can also be generalized to perform gene-based or pathway-based analyses. Applying this method on real GWAS data in type 2 diabetes (T2D) boosted the association evidence in regions well-established for T2D etiology in three diverse South-East Asian populations, as well as identified two novel gene regions and a biologically convincing pathway that are subsequently validated with data from the Wellcome Trust Case Control Consortium

    The C-Terminal Domain of the Novel Essential Protein Gcp Is Critical for Interaction with Another Essential Protein YeaZ of Staphylococcus aureus

    Get PDF
    Previous studies have demonstrated that the novel protein Gcp is essential for the viability of various bacterial species including Staphylococcus aureus; however, the reason why it is required for bacterial growth remains unclear. In order to explore the potential mechanisms of this essentiality, we performed RT-PCR analysis and revealed that the gcp gene (sa1854) was co-transcribed with sa1855, yeaZ (sa1856) and sa1857 genes, indicating these genes are located in the same operon. Furthermore, we demonstrated that Gcp interacts with YeaZ using a yeast two-hybrid (Y2H) system and in vitro pull down assays. To characterize the Gcp-YeaZ interaction, we performed alanine scanning mutagenesis on the residues of C-terminal segment of Gcp. We found that the mutations of the C-terminal Y317-F322 region abolished the interaction of Gcp and YeaZ, and the mutations of the D324-N329 and S332-Y336 regions alleviated Gcp binding to YeaZ. More importantly, we demonstrated that these key regions of Gcp are also necessary for the bacterial survival since these mutated Gcp could not complement the depletion of endogenous Gcp. Taken together, our data suggest that the interaction of Gcp and YeaZ may contribute to the essentiality of Gcp for S. aureus survival. Our findings provide new insights into the potential mechanisms and biological functions of this novel essential protein
    corecore