3,030 research outputs found

    Spin-Orbit Effects in Non-Central-Force Systems - Host-Lattice Effects in F-Centers

    Get PDF
    Two new trends associated with spin-orbit effects in a non-central-force field are evident in recent data for F centers: (1) an inverse power-law dependence of spin-orbit splitting on the lattice parameter of the host crystal and (2) a direct dependence of the splitting on the size of the host-lattice ions. These features may be summarized by a simple semiempirical formula closely related to the Mollwo-Ivey relation for the absorption energy

    Phenotypic and molecular assessment of seven patients with 6p25 deletion syndrome: Relevance to ocular dysgenesis and hearing impairment

    Get PDF
    BACKGROUND: Thirty-nine patients have been described with deletions involving chromosome 6p25. However, relatively few of these deletions have had molecular characterization. Common phenotypes of 6p25 deletion syndrome patients include hydrocephalus, hearing loss, and ocular, craniofacial, skeletal, cardiac, and renal malformations. Molecular characterization of deletions can identify genes that are responsible for these phenotypes. METHODS: We report the clinical phenotype of seven patients with terminal deletions of chromosome 6p25 and compare them to previously reported patients. Molecular characterization of the deletions was performed using polymorphic marker analysis to determine the extents of the deletions in these seven 6p25 deletion syndrome patients. RESULTS: Our results, and previous data, show that ocular dysgenesis and hearing impairment are the two most highly penetrant phenotypes of the 6p25 deletion syndrome. While deletion of the forkhead box C1 gene (FOXC1) probably underlies the ocular dysgenesis, no gene in this region is known to be involved in hearing impairment. CONCLUSIONS: Ocular dysgenesis and hearing impairment are the two most common phenotypes of 6p25 deletion syndrome. We conclude that a locus for dominant hearing loss is present at 6p25 and that this locus is restricted to a region distal to D6S1617. Molecular characterization of more 6p25 deletion patients will aid in refinement of this locus and the identification of a gene involved in dominant hearing loss

    Pancreatectomy for metastasis to the pancreas from colorectal cancer and reconstruction of superior mesenteric vein: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Tumors of the pancreatic head can infiltrate the superior mesenteric vein. In such cases, the deep veins of the lower limbs can serve as suitable autologous conduits for superior mesenteric vein reconstruction after its resection. Few data exist, however, describing the technique and the immediate patency of such reconstruction.</p> <p>Case report</p> <p>We present the case of a 70-year-old Caucasian man with a metachronous metastasis of colon cancer and infiltration of the uncinate pancreatic process, on the anterior surface of which the tumor was located. <it>En bloc </it>resection of the tumor was performed with resection of the superior mesenteric vein and reconstruction. A 10 cm segment of the superficial femoral vein was harvested for the reconstruction. The superficial femoral vein segment was inter-positioned in an end-to-end fashion. The post-operative conduit patency was documented ultrasonographically immediately post-operatively and after a six-month period. The vein donor limb presented subtle signs of post-operative venous hypertension with edema, which was managed with compression stockings and led to significant improvement after six months.</p> <p>Conclusion</p> <p>In cases of exploratory laparotomies with high clinical suspicion of pancreatic involvement, the potential need for vascular reconstruction dictates the preparation for leg vein harvest in advance. The superficial femoral vein provides a suitable conduit for the reconstruction of the superior mesenteric vein. This report supports the uncomplicated nature of this technique, since few data exist about this type of reconstruction.</p

    The relationship between endogenous thymidine concentrations and [F-18]FLT uptake in a range of preclinical tumour models

    Get PDF
    BACKGROUND: Recent studies have shown that 3′-deoxy-3′-[18F] fluorothymidine ([18F]FLT)) uptake depends on endogenous tumour thymidine concentration. The purpose of this study was to investigate tumour thymidine concentrations and whether they correlated with [18F]FLT uptake across a broad spectrum of murine cancer models. A modified liquid chromatography-mass spectrometry (LC-MS/MS) method was used to determine endogenous thymidine concentrations in plasma and tissues of tumour-bearing and non-tumour bearing mice and rats. Thymidine concentrations were determined in 22 tumour models, including xenografts, syngeneic and spontaneous tumours, from six research centres, and a subset was compared for [18F]FLT uptake, described by the maximum and mean tumour-to-liver uptake ratio (TTL) and SUV. RESULTS: The LC-MS/MS method used to measure thymidine in plasma and tissue was modified to improve sensitivity and reproducibility. Thymidine concentrations determined in the plasma of 7 murine strains and one rat strain were between 0.61 ± 0.12 μM and 2.04 ± 0.64 μM, while the concentrations in 22 tumour models ranged from 0.54 ± 0.17 μM to 20.65 ± 3.65 μM. TTL at 60 min after [18F]FLT injection, determined in 14 of the 22 tumour models, ranged from 1.07 ± 0.16 to 5.22 ± 0.83 for the maximum and 0.67 ± 0.17 to 2.10 ± 0.18 for the mean uptake. TTL did not correlate with tumour thymidine concentrations. CONCLUSIONS: Endogenous tumour thymidine concentrations alone are not predictive of [18F]FLT uptake in murine cancer models

    Magnetic Fluffy Dark Matter

    Full text link
    We explore extensions of inelastic Dark Matter and Magnetic inelastic Dark Matter where the WIMP can scatter to a tower of heavier states. We assume a WIMP mass mχO(1100)m_\chi \sim \mathcal{O}(1-100) GeV and a constant splitting between successive states δO(1100)\delta \sim\mathcal{O}(1 - 100) keV. For the spin-independent scattering scenario we find that the direct experiments CDMS and XENON strongly constrain most of the DAMA/LIBRA preferred parameter space, while for WIMPs that interact with nuclei via their magnetic moment a region of parameter space corresponding to mχ11m_{\chi}\sim 11 GeV and δ<15\delta < 15 keV is allowed by all the present direct detection constraints.Comment: 16 pages, 6 figures, added comments about magnetic moment form factor to Sec 3.1.2 and results to Sec 3.2.2, final version to be published in JHE

    Investigating the dynamics of surface-immobilized DNA nanomachines

    Get PDF
    Surface-immobilization of molecules can have a profound influence on their structure, function and dynamics. Toehold-mediated strand displacement is often used in solution to drive synthetic nanomachines made from DNA, but the effects of surface-immobilization on the mechanism and kinetics of this reaction have not yet been fully elucidated. Here we show that the kinetics of strand displacement in surface-immobilized nanomachines are significantly different to those of the solution phase reaction, and we attribute this to the effects of intermolecular interactions within the DNA layer. We demonstrate that the dynamics of strand displacement can be manipulated by changing strand length, concentration and G/C content. By inserting mismatched bases it is also possible to tune the rates of the constituent displacement processes (toehold-binding and branch migration) independently, and information can be encoded in the time-dependence of the overall reaction. Our findings will facilitate the rational design of surface-immobilized dynamic DNA nanomachines, including computing devices and track-based motors

    Maximal Spontaneous Photon Emission and Energy Loss from Free Electrons

    Full text link
    Free electron radiation such as Cerenkov, Smith--Purcell, and transition radiation can be greatly affected by structured optical environments, as has been demonstrated in a variety of polaritonic, photonic-crystal, and metamaterial systems. However, the amount of radiation that can ultimately be extracted from free electrons near an arbitrary material structure has remained elusive. Here we derive a fundamental upper limit to the spontaneous photon emission and energy loss of free electrons, regardless of geometry, which illuminates the effects of material properties and electron velocities. We obtain experimental evidence for our theory with quantitative measurements of Smith--Purcell radiation. Our framework allows us to make two predictions. One is a new regime of radiation operation---at subwavelength separations, slower (nonrelativistic) electrons can achieve stronger radiation than fast (relativistic) electrons. The second is a divergence of the emission probability in the limit of lossless materials. We further reveal that such divergences can be approached by coupling free electrons to photonic bound states in the continuum (BICs). Our findings suggest that compact and efficient free-electron radiation sources from microwaves to the soft X-ray regime may be achievable without requiring ultrahigh accelerating voltages.Comment: 7 pages, 4 figure

    The magic nature of 132Sn explored through the single-particle states of 133Sn

    Full text link
    Atomic nuclei have a shell structure where nuclei with 'magic numbers' of neutrons and protons are analogous to the noble gases in atomic physics. Only ten nuclei with the standard magic numbers of both neutrons and protons have so far been observed. The nuclear shell model is founded on the precept that neutrons and protons can move as independent particles in orbitals with discrete quantum numbers, subject to a mean field generated by all the other nucleons. Knowledge of the properties of single-particle states outside nuclear shell closures in exotic nuclei is important for a fundamental understanding of nuclear structure and nucleosynthesis (for example the r-process, which is responsible for the production of about half of the heavy elements). However, as a result of their short lifetimes, there is a paucity of knowledge about the nature of single-particle states outside exotic doubly magic nuclei. Here we measure the single-particle character of the levels in 133Sn that lie outside the double shell closure present at the short-lived nucleus 132Sn. We use an inverse kinematics technique that involves the transfer of a single nucleon to the nucleus. The purity of the measured single-particle states clearly illustrates the magic nature of 132Sn.Comment: 19 pages, 5 figures and 4 table
    corecore