5,955 research outputs found

    Ultrasonic characterisation of wheel hub/axle interference fit pressures

    Get PDF
    Railway wheels are secured onto the axle by means of an interference fit. The wheel is press fitted onto a pre-lubricated axle, and the resulting interference fit induces a contact pressure at the interface. Occasionally railway wheels fail by fatigue, with the initiation point for the failure frequently traced to the interference fit. The aim of this work is to use ultrasonic reflection to non-destructively determine contact conditions in the interference fit. The rough surface contact at the interference fit interface behaves like a spring. If the contact pressure is high the interface is conformal with few air gaps, the stiffness is then high and the transmission of an ultrasonic wave is permitted. However, when pressure is low more air gaps exist, interfacial stiffness is then reduced and more of the ultrasound is reflected. Normalised contact pressure was determined from this stiffness. Maps of the interface have been produced which show the contact pressure to peak at the edges of the fit, and to experience a continuous variation about a mean value elsewhere

    Integrating Dynamics and Wear Modelling to Predict Railway Wheel Profile Evolution

    Get PDF
    The aim of the work described was to predict wheel profile evolution by integrating multi-body dynamics simulations of a wheelset with a wear model. The wear modelling approach is based on a wear index commonly used in rail wear predictions. This assumes wear is proportional to Tγ, where T is tractive force and γ is slip at the wheel/rail interface. Twin disc testing of rail and wheel materials was carried out to generate wear coefficients for use in the model. The modelling code is interfaced with ADAMS/Rail, which produces multi-body dynamics simulations of a railway wheelset and contact conditions at the wheel/rail interface. Simplified theory of rolling contact is used to discretise the contact patches produced by ADAMS/Rail and calculate traction and slip within each. The wear model combines the simplified theory of rolling contact, ADAMS/Rail output and the wear coefficients to predict the wear and hence the change of wheel profile for given track layouts

    A side-by-side comparison of Daya Bay antineutrino detectors

    Get PDF
    The Daya Bay Reactor Neutrino Experiment is designed to determine precisely the neutrino mixing angle θ_(13) with a sensitivity better than 0.01 in the parameter sin^22θ_(13) at the 90% confidence level. To achieve this goal, the collaboration will build eight functionally identical antineutrino detectors. The first two detectors have been constructed, installed and commissioned in Experimental Hall 1, with steady data-taking beginning September 23, 2011. A comparison of the data collected over the subsequent three months indicates that the detectors are functionally identical, and that detector-related systematic uncertainties are smaller than requirements

    Neutron Calibration Sources in the Daya Bay Experiment

    Get PDF
    We describe the design and construction of the low rate neutron calibration sources used in the Daya Bay Reactor Anti-neutrino Experiment. Such sources are free of correlated gamma-neutron emission, which is essential in minimizing induced background in the anti-neutrino detector. The design characteristics have been validated in the Daya Bay anti-neutrino detector.Comment: 13 pages, 7 figure

    Improved procedures for valuation of the contribution of recreation to national economic development

    Get PDF
    Improved procedures are presented for evaluating the contribution of recreation to national economic development. These procedures are to replace those outlined in the Principles and Standards for Planning Water and Related Land Resources. Desirable criteria for valuation procedures are specified. Variation procedures currently used by federal agencies make almost exclusive use of the “interim unit day value approach,” sometimes augmented by point systems. This approach has little theoretical or empirical justification and does not encourage efficient allocation of resources. Revision and modification of the “interim unit day value approach” and the use of point systems is not a useful method of developing improved procedures. Rather, it is recommended that models be developed to predict individual willingness-to-pay for many types of recreation as functions of site characteristics, the characteristics of the individual user (including the history of the previous use), the availability of substitute activities and sites, and the location of the individual in relation to the resources under study. The total value of the resource would then be a function of these variables, the number of users, and the distribution of users within the market area. These functions may be derived from regional travel cost demand functions (which would also provide estimates of use) or could be explicit willingness-to-pay functions derived from the survey method (which must be supplemented by a use estimate). Examples of the desired models are provided along with guidelines for their development and use. Needs for further research are identified.U.S. Department of the InteriorU.S. Geological SurveyOpe

    Improved measurement of electron antineutrino disappearance at Daya Bay

    Get PDF
    We report an improved measurement of the neutrino mixing angle θ_(13) from the Daya Bay Reactor Neutrino Experiment. We exclude a zero value for sin^22θ_(13) with a significance of 7.7 standard deviations. Electron antineutrinos from six reactors of 2.9 GW_(th) were detected in six antineutrino detectors deployed in two near (flux-weighted baselines of 470 m and 576 m) and one far (1648 m) underground experimental halls. Using 139 days of data, 28909 (205308) electron antineutrino candidates were detected at the far hall (near halls). The ratio of the observed to the expected number of antineutrinos assuming no oscillations at the far hall is 0.944±0.007(stat.)±0.003(syst.). An analysis of the relative rates in six detectors finds sin^22θ_(13)=0.089±0.010(stat.)±0.005(syst.) in a three-neutrino framework

    Refractive Structure-From-Motion Through a Flat Refractive Interface

    Get PDF
    Recovering 3D scene geometry from underwater images involves the Refractive Structure-from-Motion (RSfM) problem, where the image distortions caused by light refraction at the interface between different propagation media invalidates the single view point assumption. Direct use of the pinhole camera model in RSfM leads to inaccurate camera pose estimation and consequently drift. RSfM methods have been thoroughly studied for the case of a thick glass interface that assumes two refractive interfaces between the camera and the viewed scene. On the other hand, when the camera lens is in direct contact with the water, there is only one refractive interface. By explicitly considering a refractive interface, we develop a succinct derivation of the refractive fundamental matrix in the form of the generalised epipolar constraint for an axial camera. We use the refractive fundamental matrix to refine initial pose estimates obtained by assuming the pinhole model. This strategy allows us to robustly estimate underwater camera poses, where other methods suffer from poor noise-sensitivity. We also formulate a new four view constraint enforcing camera pose consistency along a video which leads us to a novel RSfM framework. For validation we use synthetic data to show the numerical properties of our method and we provide results on real data to demonstrate performance within laboratory settings and for applications in endoscopy

    Correlated defects, metal-insulator transition, and magnetic order in ferromagnetic semiconductors

    Full text link
    The effect of disorder on transport and magnetization in ferromagnetic III-V semiconductors, in particular (Ga,Mn)As, is studied theoretically. We show that Coulomb-induced correlations of the defect positions are crucial for the transport and magnetic properties of these highly compensated materials. We employ Monte Carlo simulations to obtain the correlated defect distributions. Exact diagonalization gives reasonable results for the spectrum of valence-band holes and the metal-insulator transition only for correlated disorder. Finally, we show that the mean-field magnetization also depends crucially on defect correlations.Comment: 4 pages RevTeX4, 5 figures include
    corecore